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	Prior studies have demonstrated that Syzygium samarangense possesses antioxidant, antifungal, and anti-inflammatory properties as well as other advantages. The fruit is widely consumed, yet the medical benefits of the stem bark as an alternative therapeutic option have not been explored. This research was performed to determine the specific chemicals contained in the dichloromethane fraction of the methanol extract of this plant. The powdered plant sample was extracted with methanol by maceration and fractionated with dichloromethane. The resulting dichloromethane fraction was then concentrated, and its chemical constituents were identified using LC-MS based on the Willey and NIST libraries. The findings of this research showed the presence of 40 phytoconstituents in five main classes of secondary metabolites: phenolics, flavonoids, terpenoids, steroids, and others. This study explains the basic structures, compound derivatives, biological functions of the compounds identified in F2 with reference to relevant literature. The stem bark of S. samarangense predominantly contains compounds with significant bioactivity, including antioxidants, antifungal, anti-inflammatory, anticancer, and antiviral properties. This research offers valuable insight into the groundwork for the utilization of this plant and the selection of natural and synthetic substances.
                                
Keywords: Chemical profile, Liquid Chromatography-Mass Spectrometry, methanol extract, Syzygium samarangense.

	Copyright: © 2024    Tukiran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 


 
Introduction 
Syzygium samarangense or Jambu Semarang (in Indonesian), is one of Indonesia's local plants whose medical benefits still need further exploration. However, its mineral compositions, including iron, potassium, calcium, sodium, and magnesium, are higher than that of S. aqueum.1 In addition to having higher magnesium levels, it also contains tannins and mild antibiotic properties against S. aureus, M. smegmatis, and C. albicans.2 The plant also contains desmethoxymatteucinol, 5-O-methyl-4'-desmethoxymatteucinol, oleanic acid, and β-sitosterol as bioactive compounds.3–5 Furthermore, the plant also has high nutritional content: protein (92.9%), carbohydrates (6%), crude fibre (0.46%), and ash content (0.21%).6 Several studies have reported the leaves' analgesic, anti-inflammatory, and remarkable CNS effects.1,6 The extract has shown potent antihelmintic properties.4,5 Reports also showed that the stem bark extract of this plant has antidiabetic potential with inhibitory activity against the α-glucosidase enzyme.7 Phytochemical analysis of the stem bark extract showed the presence of terpenoids, steroids, tannins, saponins, phenolics, and flavonoids, 8 and possessed excellent antioxidant properties.9,10. The LC-MS analysis of a fraction from the VLC of the dichloromethane extract showed the presence of four flavonoid compounds, namely pinocembrin, uvangoletin, sterkurensin, and aurethiacin.11
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There are no reports regarding the study of the chemical profile of the dichloromethane fraction resulting from the partitioning of the methanol extract of S. samarangense stem bark, making researchers interested in conducting this research.
The current aimed to investigate the chemical profile of the dichloromethane fraction of the crude methanol extract through LC-MS analysis, followed by an in-depth study of the diversity of chemical structures and bioactivity properties with a view of establishing its medicinal potential and use as a herbal agent/medicine.
 
Methods
Plant Collection and Identification
The plant stem bark sample of S. samarangense was collected from a local area in Kediri, East Java, located between Latitude 7.8480° S and longitude 112.0178° E, Indonesia, in October 2018. The plant was identified at the Herbarium-LIPI, Purwodadi, East Java, Indonesia, where voucher specimen no. 1498/IPH.06/HM/X/2018 was deposited.
 
Preparation, Extraction, and Fraction of Plant material
The stem bark of S. samarangense (c.a. 15 kg) was washed with tap water and dried under sunlight for one week. It was then dried in an oven at a reduced temperature (not more than 50 °C). The dried material was ground to a powder using an electric grinder to obtain 9.5 kg and transferred to an airtight container.11 The powdered stem bark (5 kg) of S. samarangense was macerated using methanol (c.a. 15 L) at ambient temperature (25 ℃). The container with its contents was sealed by foil and kept for 24 hours, accompanied by occasional shaking and stirring. The whole mixture was then filtered using a Buchner funnel, and the filtrate was concentrated at 50 °C with a vacuum rotary evaporator to obtain a thick, dark-brown crude extract (25 g), kept in a refrigerator at 4 ℃ until further use.
The crude extract was dissolved slightly in methanol and water (300 mL) and then partitioned using n-hexane (300 mL x 3, F1) in a separating funnel. The aqueous fraction was then separated with dichloromethane (300 mL x 3, F2) in a separating funnel. The fractions were concentrated at 40 °C with a vacuum rotary evaporator. under a vacuum using a rotary evaporator at 40℃. The dried fraction (F2) obtained was stored in a refrigerator until further analysis. 
 
Identification Using LC-MS ESI
The chemical content of the F2 fraction was analysed using the LC-MS. LC-MS instrument (Shimadzu LC-MS 8040) equipped with a Shimadzu Shim Pack FC-ODS column (2 mm x 150 mm, 3 µm) and a column temperature of 35 ℃ was used. The sample injection volume was 1 µL with isocratic separation (the mobile phase used was 90% methanol with water) at a flow rate of 0.5 mL/min. The LC-MS analysis was conducted in negative ion mode based on the following parameters: source temperature of 100 ℃, cone sampling voltage of 23 eV, capillary voltage of 3.0 kV, solvent discharge temperature of 350 ℃, and solvent gas flow of 60 mL/hour. The mass spectrum detection range was set between m/z 10-1000 using ESI negative ion mode, with a scanning duration of 0.6 seconds per scan and a total running time of 80 minutes. LC-MS has been an effective method for identifying compounds in a matrix13.
 
Results and Discussion
The chemical profile of the dichloromethane fraction (F2) of S. samarangense investigated using LC-MS is shown in Figure 1. There are 40 compounds peaks identified with the MS detector in Table 1. Polyphenolic compounds (flavonoids, flavanones, flavonols), phytosterols, etc, were identified in F2. The basic structure of flavonoid and its derivatives were shown in Figure 2. Those with simple structures include 1, 3, and 5. Compound 1 (methyl salicylate) is mainly found in Gynura procumbens, which has a spicy taste commonly called mint.14 When making deep heating liniments (like Bengay) to relieve joint and muscular pain, methyl salicylate is utilized in high doses as an analgesic and rubefacient. On the other hand, this substance in the body metabolizes into salicylates, including salicylic acid, a well-known NSAID.15,16 Compound 3 (gallic acid) is widely found in many parts of plants17 and offers antioxidant activity. Compound 3 is also widely used to measure the total phenolic content of an extract 18. This compound can be utilized as an antioxidant19, antineoplastic agent20, astringent21, and cyclooxygenase-2 (COX-2) inhibitor.22 Finally, compound 5 (eugenin) is mainly produced by Cylindropuntia bigelovi 23 and Daucus carota plants.24 This compound is well-known as a potential HIF-1-α inhibitor.23
Other phenolic derivatives identified in the fraction were tannins and phenylpropanoid groups. Tannins are phenolic compounds with more than one hydroxyl group and a more complex structure, generally called polyphenols.25 Compound 37 (strictinin) is a tannin belonging to the ellagitannin group, predominantly in Alnus japonica26 and Balanophora japonicsssa,27 was identified in this study.
A phenylpropanoid group is a group of compounds with an aromatic ring substituted with a propene tail, which is generally synthesized from the amino acid phenylalanine and tyrosine pathways.28 Compounds belonging to the phenylpropanoid group are compounds 2 and 6, classified as phenylpropene. Compounds 2 (eugenol) and 6 (eugenol acetate) are mainly found in clove plants and are commonly called clove oil.29,30 Compound 6 is a derivative of compound 2 substituted by an acetyl group; both of these compounds have antioxidant, insecticidal 30, antimicrobial 31, and potency as antiviral inhibitor HIV-1 protease.32
Flavonoids are polyphenolics found in plants with a C6-C3-C6 basic structure with carbon rings.33 Some flavonoids, namely the chalcone and flavanone groups, were identified in the dichloromethane fraction (F2) of S. samarangense.
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Figure 1: LC-MS Chromatogram of F2 Fraction (Dichloromethane Fraction)
 
  
The chalcone group has an open flavonoid basic structure with two rings (A and B) attached by an α,β-unsaturated carbonyl system with different substituents.33 The chalcone group has significant bioactivity and inhibitory activity against NF-kB receptors implicated in cancers.34 The chalcone compounds identified in the LC-MS chromatogram include compounds 11, 12, 13, 15, 16, 18, 19, and 22. Compound 11 (uvangoletin) is also found in Sarcandra glabra 35 and Monanthotaxis trichocarpas.36 Several researchers reported that this compound has anticancer and antiviral activities. Compound 12 (stercurensin), also found in Cleistocalyx operculatus37 and Comptonia peregrina38, has neuraminidase antiviral activity against two influenza viruses, H1N1 and H9N2.37 Similar to compound 12, is compound 13 (demethoxymatteucinol), commonly found in Pentarhizidium orientale39 and Cleistocalyx operculatus37, also exhibits the antiviral properties against the influenza viruses.37,39 Compound 15, generally called myrigalone H, can be found in Myrica gale40 and is an mTOR inhibitor in cancer cells.41 Meanwhile, compound 16 (4',6'-dihydroxy-3',5'-dimethyl-2'-methoxychalcone) can be found in S. nervosum42 and has antiviral neuraminidase function against two influenza viruses, H1N1 and H9N2.37,39 Compound 18 (aurentiacin) found in Myrica pensylvanica38 possesses an anti-inflammatory activity tested on mouse macrophages.43,44 Compound 19 (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone) can be found in S. nervosum42 with similar bioactivity as compound 16.37,39 Compound 22 (syzygiol) can be isolated from S. polycephaloides, where this compound has antitumor activity against skin tumours.45 
Flavanones are the other flavonoid derivative identified in the fraction. The flavanone group generally has 15 carbon rings with two phenyl groups (A and B), a heterocyclic ring (oxygen-embedded carbon ring), and a ketone group on carbon number 4. This group has other derivatives with several substituted hydroxyl groups in its basic structure. Flavanones that are substituted with one hydroxyl group are called hydroxyflavanones. Compound 17 (7-hydroxy-5-methoxy-6,8-dimethylflavanone) is a dihydroxyflavone derivative of pinocembrin where the hydroxyl group attached at C-5 is methylated. This compound can be found in S. samarangense46 and Couroupita guianensis.47 The next in this group is a substituted compound with two hydroxyl groups called dihydroxyflavone33, in which compounds belonging to the dihydroxyflavone groups are compounds 8, 9, 10, and 20 (Table 1). Pinocembrin and its derivatives can be found predominately in Piper sarmentosum 48 and Cryptocarya chartacea.49 In general, this group exhibits antioxidant50, anticancer51,52, anti-inflammatory12, antineoplastic53 activities, and vasodilatory and neuroprotective properties.54 The next hydroxylated flavone group with four hydroxyl groups is tetrahydroxyflavones. A compound belonging to this group found in the fraction is compound 14 (kaempferol), which is often extracted from Witch-hazel55, grapefruit56, and Lotus ucrainicus.57 Kaempferol is a well-known antioxidant that works by reducing oxidative stress.58 It is often used in cancer treatment59 and has antibacterial activity.60
The next group is that with five hydroxyl groups, commonly referred to as pentahydroxyflavone. Compound 29 (myricitrin), a pentahydroxyflavone myricetin derivative (Figure 4), belongs to this group. The hydroxyl group attached at C-3 is substituted with an a-L-rhamnopyranosyl group. This compound is found and has been isolated from Myrica cerifera61, S. levinei62, and Limonium aureum.63,64 This compound has antiallergic properties65, and its protein kinase C inhibitors have a significant role in cancer treatment.66
Another group, characterized by six hydroxyl groups, is commonly referred to as hexahydroxyflavone. The compounds found in this group are myricetin and its derivatives, compounds 21, 31, and 36. Many myricetins and their derivatives are found in Morella rubra 67 and Ficus auriculata 68. These compounds have anti-inflammatory (COX-1 inhibitors)69, 70, antineoplastic20,71, and antioxidant67 activities. 
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Figure 2: Basic structure of flavonoid and its derivatives
 
Table 1: Identified Compounds based on LC-MS Chromatogram of F2 Fraction (Dichloromethane Fraction)
 
	Comp. No.
	RT (Min)
	Composition 
(%)
	Compound Results
	 

	Analysis
	Identified Compound

	1
	1.606
	0.81312
 
	Methyl salicylate
CF: C8H8O3; EM: 152.0473; MW: 152.490; m/z: 152.0473 (100%), and 153.0507 (8.7%)
	[image: OEBPS/images/image0005.png] 

	2
	2.694
	0.40981
 
	Eugenol
CF: C10H12O2; EM: 164.0837; MW: 164.2040; m/z: 164.0837 (100%), and 165.0871 (10.8%)
	[image: OEBPS/images/image0006.png] 

	3
	3.042
	2.75891
	Gallic acid
CF: C7H6O5; EM: 170.0215; MW: 170.1200; m/z: 170.0215 (100%), 171.0249 (7.6%), and 172.0258 (1.0%)
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	4
	5.494
	3.62398
 
	β-Caryophyllene
CF: C15H24; EM: 204.1878 ; MW: 204.3570 ; m/z: 204.1878 (100%), and 205.1912 (1.2%) 
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	5
	5.571
	2.27671
 
	Eugenin
CF:C11H10O4; EM: 206.0579;  MW:206.1970; m/z: 206.0579 (100%), and 207.0613 (11.9%)
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	6
	5.587
	3.79729
 
	Eugenol acetate
CF:C12H14O3; EM: 206.0943;  MW:206.2410; m/z: 206.0943 (100%), and 207.0976 (13.0%)
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	7
	6.408
	2.30441
 
	Benzyl benzoate
CF:C14H12O2; EM: 212.0837;  MW: 212.2480; m/z: 212.0837 (100%), 213.0871 (15.1%), and 213.0871 (1.1%)
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	8
	8.217
	1.52868
 
	Pinocembrin
CF: C15H12O4; EM: 256.0736; MW: 256.2570; m/z: 256.0736 (100.0%), 257.0769 (16.2%), and 258.0803 (1.2%)
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	9
	9.349
	2.06804
 
	(-)-Strobopinin 
CF:C16H14O4; EM: 270.0892;  MW: 270.2840; m/z: 270.0892 (100.0%), 271.0926 (17.3%), and 272.0959 (1.4%)
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	10
	9.375
	1.73286
 
	8-Methylpinocembrin
CF: C16H14O4; EM: 270.0892; MW: 270.2840; m/z: 270.0892 (100.0%), 271.0926 (17.3%), and 272.0959 (1.4%)
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	11
	9.74
	1.21678
 
	Uvangoletin
CF: C16H16O4; EM: 272.1049; MW: 272.3000; m/z: 272.1049 (100.0%), 273.1082 (17.3%), and 274.1116 (1.4%)
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	12
	10.02
	1.50924
 
	Stercurensin
CF: C17H16O4; EM: 284.1049; MW: 284.3110; m/z: 284.1049 (100.0%), 285.1082 (18.4%), and 286.1116 (1.6%)
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	13
	10.03
	1.73178
 
	Demethoxymatteucinol
CF: C17H16O4; EM: 284.1049; MW: 284.3110; m/z: 284.1049 (100.0%), 285.1082 (18.4%), and 286.1116 (1.6%)
	[image: OEBPS/images/image0017.png] 

	14
	10.322
	2.25465
 
	Kaempferol
CF: C15H10O6 ; EM: 286.0477; MW: 286.2390 m/z: 286.0477 (100.0%), 287.0511 (16.2%), 288.0520 (1.2%), and 288.0544 (1.2%)
	[image: OEBPS/images/image0018.png] 

	15
	10.336
	2.22455
 
	2',4'-Dihydroxy-6'-methoxy-3'-methyldihydrochalcone
CF: C17H18O4; EM: 286.1205; MW: 286.3270; m/z: 286.1205 (100.0%), 287.1239 (18.4%), and 288.1272 (1.6%)
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	16
	10.517
	2.64109
 
	4',6'-Dihydroxy-3',5'-dimethyl-2'-methoxychalcone
CF: C18H18O4 ; EM: 298.1205 ; MW: 298.3380 m/z: 298.1205 (100.0%), 299.1239 (19.5%), and 300.1272 (1.8%)
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	17
	10.519
	1.88630
 
	7-Hydroxy-5-methoxy-6,8-dimethylflavanone
CF: C18H18O4; EM: 298.1205 ; MW: 298.3380 m/z: 298.1205 (100.0%), 299.1239 (19.5%), and 300.1272 (1.8%)
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	18
	11.015
	0.85809
 
	Aurentiacin
CF: C18H18O4; EM: 298.1205; MW: 298.3380; m/z: 298.1205 (100.0%), 299.1239 (19.5%), and 300.1272 (1.8%)
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	19
	11.017
	1.66310
 
	2',4'-Dihydroxy-6'-methoxy3',5'-dimethylchalcone
CF: C18H18O4; EM: 298.1205; MW: 298.3380; m/z: 298.1205 (100.0%), 299.1239 (19.5%), and 300.1272 (1.8%)
	[image: OEBPS/images/image0023.png] 

	20
	11.02
	0.94841
 
	(+)-6,8-Di-C-methylpinocembrin-5-methylether
CF: C18H18O4; EM: 298.1205; MW: 298.3380; m/z: 298.1205 (100.0%), 299.1239 (19.5%), and 300.1272 (1.8%)
	[image: OEBPS/images/image0024.png] 

	21
	11.514
	2.04365
 
	Myricetin
CF: C15H10O8; EM: 318.0376; MW: 318.2370; m/z: 318.0376 (100.0%), 319.0409 (16.2%), 320.0418 (1.6%), and 320.0443 (1.20%)
	[image: OEBPS/images/image0025.png] 

	22
	11.915
	1.21666
 
	Syzygiol
CF: C18H18O5 ; EM: 314.1154 ; MW: 314.3370 m/z: 314.1154 (100.0%), 315.1188 (19.5%), 316.1221 (1.8%), and 316.1197 (1.0%)
	[image: OEBPS/images/image0026.png] 

	23
	12.417
	0.96577
 
	Biflorin
CF: C16H18O9 ; EM: 354.0951 ; MW: 354.3110; m/z: 354.0951 (100.0%), 355.0984 (17.3%), 356.0993 (1.8%), and 356.1018 (1.4%)
	[image: OEBPS/images/image0027.png] 

	24
	17.163
	4.85456
 
	β-Sitosterol
CF: C29H50O ; EM: 414.3862 ; MW: 414.7180 m/z: 414.3862 (100.0%), 415.3895 (31.4%), 416.3929 (2.7%), and 416.3929 (2.0%)
	[image: OEBPS/images/image0028.png] 

	25
	19.614
	7.45610
 
	Lupeol 
CF: C30H50O ; EM: 426.3862 ; MW: 426.7290 m/z: 426.3862 (100.0%), 427.3895 (32.4%), 428.3929 (2.7%), and 428.3929 (2.4%)
	[image: OEBPS/images/image0029.png] 

	26
	21.458
	1.28346
 
	Isoengeletin 
CF: C21H22O10 ; EM: 434.1213 ; MW: 434.3970 m/z: 434.1213 (100.0%), 435.1247 (22.7%), 436.1280 (2.5%), and 436.1255 (2.1%)
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	27
	22.284
	1.03783
 
	Betulin 
CF: C30H50O2 ; EM: 442.3811 ; MW: 442.7280 m/z: 442.3811 (100.0%), 443.3844 (32.4%), 444.3878 (2.7%), and 444.3878 (2.4%)
	[image: OEBPS/images/image0031.png] 

	28
	23.448
	1.05291
 
	Epibetulinic acid
CF: C30H48O3 ; EM: 456.3603 ; MW: 456.7110 m/z: 456.3603 (100.0%), 457.3637 (32.4%), 458.3671 (2.7%), and 458.3671 (2.4%)
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	29
	24.119
	2.69024
 
	Myricitrin
CF: C21H20O12; EM: 464.0955; MW: 464.3790; m/z: 464.0955 (100.0%), 465.0988 (22.7%), 466.0997 (2.5%), and 466.1022 (2.5%)
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	30
	25.839
	2.42486
 
	Mearnsitrin
CF: C22H22O12; EM: 478.1111; MW: 478.4060; m/z: 478.1111 (100.0%), 479.1145 (23.8%), 480.1178 (2.7%), and 480.1154 (2.5%)
	[image: OEBPS/images/image0034.png] 

	31
	31.816
	2.52852
 
	Myricetin-3-O-(4''-O-malonyl)-α-L-rhamnopyranoside
CF: C24H22O15 ; EM: 550.0959 ; MW: 550.4250 m/z: 550.0959 (100.0%), 551.0992 (26.0%), 552.1026 (3.2%), and 552.1001 (3.1%)
	[image: OEBPS/images/image0035.png] 

	32
	33.422
	4.05880
 
	Stigmasterol-3-O-β-D-glucoside
CF: C35H58O6 ; EM: 574.4233 ; MW: 574.8430 m/z: 574.4233 (100.0%), 575.4267 (37.9%), 576.4300 (4.3%), 576.4300 (2.7%), and 576.4276 (1.2%)
	[image: OEBPS/images/image0036.png] 

	33
	33.428
	4.80307
 
	β-Sitosterol-D-glucoside
CF: C35H60O6 ; EM: 576.4390 ; MW: 576.8590 m/z: 576.4390 (100.0%), 577.4423 (37.9%), 578.4457 (4.3%), 578.4457 (2.7%), and 578.4432 (1.2%)
	[image: OEBPS/images/image0037.png] 

	34
	33.013
	2.86462
 
	Campesterol glucoside 
CF: C34H58O6; EM: 562.4233 ; MW: 562.8320 m/z: 562.4233 (100.0%), 563.4267 (36.8%), 564.4300 (6.6%), and 564.4276 (1.2%)
	[image: OEBPS/images/image0038.png] 

	35
	35.646
	2.83992
 
	Desmanthin 1
CF: C28H24O16; EM: 616.1064; MW: 616.4840; m/z: 616.1064 (100.0%), 617.1098 (30.3%), 618.1131 (4.4%), and 618.1107 (3.3%)
	[image: OEBPS/images/image0039.png] 

	36
	35.649
	3.00663
 
	Myricetin-3-(3''-galloylrhamnoside)
CF: C28H24O16 ; EM: 616.1064 ; MW: 616.4840 m/z: 616.1064 (100.0%), 617.1098 (30.3%), 618.1131 (4.4%), and 618.1107 (3.3%)
	[image: OEBPS/images/image0040.png] 

	37
	37.022
	1.48540
 
	Strictinin
CF: C27H22O18 ; EM: 634.0806 ; MW: 634.4550 m/z: 634.0806 (100.0%), 635.0840 (29.2%), 636.0873 (4.1%), 636.0849 (3.7%), and 637.0882 (1.1%)
	[image: OEBPS/images/image0041.png] 

	38
	46.203
	4.09850
 
	Sitosteryl stearate
CF: C47H84O2 ; EM: 680.6471 ; MW: 681.1870 m/z: 680.6471 (100.0%), 681.6505 (50.8%), 682.6538 (12.6%), and 683.6572 (1.2%)
	[image: OEBPS/images/image0042.png] 

	39
	46.213
	6.54282
 
	Cycloartenyl stearate
CF: C48H84O2 ; EM: 692.6471 ; MW: 693.1980 m/z: 692.6471 (100.0%), 693.6505 (51.9%), 694.6538 (13.2%), and 695.6572 (1.4%)
	[image: OEBPS/images/image0043.png] 

	40
	46.215
	4.49788
 
	Lupenyl stearate
CF: C48H84O2 ; EM: 692.6471 ; MW: 693.1980 m/z: 692.6471 (100.0%), 693.6505 (51.9%), 694.6538 (13.2%), and 695.6572 (1.4%)
	[image: OEBPS/images/image0044.png] 


Note = CF: Chemical Formula; EM: Exact Mass; MW: Molecular Weight; m/z: mass per charge
 
Beyond the chalcone and flavanone groups, other groups of polyphenols identified in F2 include the flavonol group, notably compound 30 (mearncitrin) and its derivatives featuring two hydroxyl groups, commonly referred to as dihydroflavonols, such as compound 26 (isoengeletin). Compound 30 (mearncitrin) is a glycoside derived from mearnsetin substituted by the a-L-rhamnopyranosyl. This compound has been isolated from Byrsonima coccolobifolia72 and Myrsine africana73, known as natural antioxidants from plants74. Meanwhile, compound 26 (isoengeletin) is a dihydroflavonol derivative substituted by the a-L-rhamnopyranosyl at the third position. This compound can be found in Smilax glabrae 75 and Iryanthera lancifolia 76 and is being researched for psoriasis, hyperuricemia, and gout.77 
Terpenoids are a group of compounds commonly identified as oils derived from 5-carbon isoprene, namely monoterpenes, diterpenes, triterpenes, etc. The isoprene structure as the basic structure for the terpenoid group is presented in Figure 6.78 In general, terpenoids are compounds with different bioactivity in the pharmaceutical field, especially in medicinal chemistry.79 In this fraction, compounds belonging to the terpenoids are compounds 25, 27, 28, and 40. These compounds can be grouped into triterpene-type terpenoids because of the presence of 3 basic structures of isoprenes. Compound 25 (lupeol) is a pentacyclic triterpenoid with anticancer80,81 and anti-inflammatory activities.80 This compound can be found in mango82, Camellia japonica 83, Acacia visco 84, and Abronia villosa. 85 Compound 27 (betulin) is a triterpene commonly isolated from birch trees.86 This compound is a lupeol derivative with hydroxyl groups attached at C-3 and C-28 known to have anticancer activity.87 Compound 28 (epibetulinic acid) is a derivative of betulic acid (also a lupeol derivative) found in Microtropis fokienensis 88, Hypericum lancifolium 89, and birch trees.90 Epibetulinic acid has anti-inflammatory, antineoplastic 91, and anti-HIV 92 activities. Compound 40 (lupenyl stearate) is a lupeol derivative substituted with a stearyl group at the b-position, commonly found in S. Samarangense.93.
Steroids are compounds with a basic structure of seventeen C atoms bonded in four rings (with three cyclohexane rings and one cyclopentane ring).94,95 The compounds within this group are steroid derivatives with a hydroxyl group, namely sterols 96. Sterols found in plants are called phytosterols, while the ones found in animals are called zoosterols. These derivative compounds have many uses, such as inhibiting human cholesterol absorption. Compounds classified as phytosterols include compounds 24, 32, 33, 34, 38, and 39. Compound 24 (β-sitosterol) is a sterol derivative substituted with a β-hydroxyl group at the third position. This compound can be found in Typhonium trilobatum 97 and Elodea canadensis 98, used as an antioxidant 99, anticholesteremic drug 100, and reduces the toxic effects of radiation.97 Compound 32 (stigmasterol-3-O-β-D-glucoside) is a glycoside compound derived from stigmasterol, which is substituted with β-D-glucopyranosyl at position 3 with glycosidic bonds, which are also classified as steroid saponins. This compound is often found in Symplocos lancifolia, which is used as an antioxidant and antibacterial.101 Compound 33 (β-sitosterol-D-glucoside) is a glycoside compound derived from sitosterol, which is substituted with D-glucopyranosyl found in Dimocarpus longan 102 and Erigeron canadensis 103 having antioxidant 104 and anti-inflammatory properties.48 Compound 38 (sitosteril stearate) is a sterol compound derived from sitosterol, substituted by a stearyl group at the b-position. This compound is commonly found in S. samarangense, which has antioxidant and anti-inflammatory properties.93 Compound 39 (cycloartenyl stearate) is a cycloartenol derivative compound substituted with a stearyl group found in S. samarangense, with analgesic and anti-inflammatory activities.93
In addition to the main compound groups described above, the ester and quinone groups were detected in this fraction. The ester group found in this fraction is compound 7 (benzyl benzoate), a benzoic acid derivative. This compound is easily found and isolated from the genus Polyalthia 105 plants and Populus tremula 106 as a scabicide and acaricide.107 Meanwhile, the quinone group found in this fraction is compound 23 (biflorin), belonging to the naphthoquinone group. This compound is found in S. aromaticum 108 and Capraria biflora 109 and has antimicrobial, antitumor, and antimutagenic activities.109
 
Conclusion
The findings of this study indicated that the dichloromethane fraction of methanol extract of the stem bark of S. samarangense contains 40 phytoconstituents categorised into phenolics, flavonoids, terpenoids, and steroids, each with distinct bioactivities. This information is insightful for further research and understanding of the properties of these compounds. Additional research on isolating compounds from F2 is necessary to identify lead compounds for the development of pharmaceutical products.
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