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Introduction  

Giant Swamp Taro (GST) [Cyrtosperma merkusii (Hassk.) 

Schott (family Araceae)] Locally called daluga is an underutilized 

tropical crop endemic to Micronesia and thought to be native to 

Indonesia since it was found to grow only in the Sangihe and Talaud 

Islands, North Sulawesi. GST grows in a coastal environment and has a 

unique resistance to salinity. Considering the ecological habitat of GST, 

it may have the potential to help mitigate the impact of climate change 

when cultivated as a source of food starch for marginal coastal 

communities. GST is a paludiculture crop (a crop that can be cultivated 

in rewetted peat land conditions to reduce gas emissions) which may 

serve as a source of nutrients for iron uptake.1 

GST tubers or corms are rich in starch with fine granules. GST are 

potential staple food material with a high carbohydrate composition 

(81-83%), with a starch content of 65.52 ± 0.02%, amylose and 

amylopectin composition of 29.63 ± 0.01% and 32.88 ± 0.02%, 

respectively and crude fibre of 18.55%.2 
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GST is also a healthy food source with a resistant starch composition of 

11.37 ± 0.03% and digestive starch content of 44.30 ± 0.26%, which is 

a healthier digestive character in processed foods by reducing 

carbohydrate loading and conversion into blood sugar and therefore has 

the potential as functional foods with low glycaemic index.2,3 GST 

starch can be developed into advanced food products like dried 

noodles.4 The pulp biomass or waste from GST starch processing 

contains various important components such as fibers, carbohydrates, 

ash, proteins, lignins, cellulose and hemicellulose which are a good 

source of cellulose nanocrystal (CNC) material.5 Waste biomass of GST 

starch processing are good sources of carbon and inorganic nitrogen that 

may serve as natural feed source for fisheries to increase tilapia survival 

rate and a feed source that can reduce blood glucose levels in broiler 

chickens.6,7 

Starch in the food industry has an important role in food products such 

as canned food, baked food, frozen food, salad dressings and baby food 

due to their good gelling and thickening property. Resistant starch is 

commonly used as a functional food ingredient, especially in food 

products that require large amounts of dietary fiber that help reduce the 

absorption of fat and glucose in the small intestine. Fermentation of 

resistant starch by some prebiotic microorganisms will produce 

metabolites in the form of short chain fatty acids (SCFA) which can 

increase the immunity of colonic cells, reduce the incidence of infection 

by pathogenic bacteria and help reduce the risk of colon cancer.8-10 

Starch made from plant perimedular and plant tubers has been used for 

various derivative products (food and non-food), but native starches in 

general has properties that is limited in its application due to its low 

thermal resistance, low shear resistance, low solubility in cold water, 

high viscosity, low swelling power and the retrogradation tendency to 

staling and syneresis such that the final product texture and structures 
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Fourier transform infrared (FTIR) spectroscopic analysis and Field emission scanning electron 

microscopy (FESEM) of the starch were also carried out. The results revealed that acid 

modification of GST starch has significant effect on its physico-chemical properties, 

microstructure and FTIR spectrum. Native GST starch had high amylose and amylopectin contents 

with a high ratio of amylopectin to amylose. Acid modification of the GST starch resulted in a 

starch with lower amylose and amylopectin content. Consequently, lowering the viscosity and 
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result in starch product with better physic-chemical properties that could be employed as food 
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can be affected, thus limiting its application in the advanced 

industries.11,12 

The poor physical and chemical properties of some native starches limit 

their use as raw materials in the processing of advanced functional food 

products in the food industry. Therefore, modification efforts are 

needed to improve starch characteristics such as solubility, texture, and 

tolerance to high temperatures. Besides, starch modification has huge 

potential to provide functional effects to food products.13 One way to 

improve the characteristics of starch is to increase the amount of short-

chain amylose and the level of retrogradable starch by several 

modification processes such as pressure-cooling heating process, starch 

hydrolysis by chemical treatment using propionate esterification 

method,14 acetylation,15 cyclodextrin glycosyltransferase or specific 

cyclodextrinase,16 and hydroxypropylation,17 enzymatic treatment using 

amylase enzyme,18 physical modification of starch by ultrasonic wave 

method,19,20 autoclaving-cooling, heat moisture treatment (HMT),21 

cross-linking/annealing (ANN),22 and extrusion method.23  Starch 

modification generally causes changes in the polysaccharide molecules 

of the starch, causing changes to the properties and functions of the 

starch including the heat characteristics of pastes and gels as well as the 

digestibility of the starch.24 Physical modification of starch can produce 

starch with similar characteristics as chemical modification. For 

example, lightly cross-linked starch is known to increase its tolerance 

to low pH, high temperatures, and high shear stress.25 

A previous study has modified starch using hydroxypropyl 

methylcellulose and sodium tripolyphosphate which were able to 

increase the swelling power of corn starch.26 Chemical modification 

with esterification method using octenyl succinic anhydride can 

increase digestible starch and improve rheological characteristics and 

thermal properties of potato starch,27 cross-linking modification can 

increase the degree of substitution, increase the viscosity, swelling 

power, syneresis, and pH tolerance of canna starch,28 chemical 

modification through esterification and acid alcohol can increase 

alterations in the physicochemical, pasting, particle size, and 

morphological action, lowering of the amylose content of rice bean 

starch and swelling power of rice bean starch.29 This study aims to 

determine the changes in physicochemical characteristics of native GST 

(Cyrtosperma merkusii) starch upon modification by acid hydrolysis.  

 

Materials and Methods 

Plant Collection and Identification 

GST (Cyrtosperma merkusii) was obtained from coastal swamps of 

Pokol village, Sangihe Island, North Sulawesi, Indonesia (125°9′28″E–

125°56′57″E) on 11th March, 2022. The plant material was identified 

and authenticated by Mark W. Skinner of the National Plant Data 

Center, US Department of Agriculture - Natural Resources 

Conservation Service (USDA-NRCS). The voucher 

number/taxonomical 506754 reference was obtained from the 

Integrated Taxonomic Information System (ITIS) Report for 

Cyrtosperma merkusii (Hassk.) Schott, of the order Alismatales and 

family Araceae.  

 

Starch Extraction 

GST corms were cleaned by washing in running water and then pealed. 

The pealed GST corms were then crushed to a pulp and washed 

repeatedly with 10% sodium metabisulfite solution until the pulp slurry 

has been cleaned of the mucus. The washed pulp was macerated in 2% 

sodium chloride solution and left for the starch to sediment. The 

sedimented GST starch was then collected and dried at 25oC under 

constant low airflow current in a cabinet. The dried starch sediments 

were then crushed using a disc miller.4 

 

Starch Modification 

GST starch was modified by acid hydrolysis according to the method 

previously described.30 GST starch was suspended in water and heated 

in an autoclave at 121°C for 30 min and then cooled at 4°C for 24 h. 

The starch suspension was diluted in 0.2 M citric acid solution (10%, 

w/v) then incubated at 45°C for 24 h, the starch was then neutralized by 

the addition of 1 M NaOH until the pH became 7. The starch was 

separated from the supernatant by centrifugation at 3000 rpm for 20 min 

and then the starch sediment was oven dried at 50°C for 48 h. 

 

Analyses of Starch 

The starch samples were subjected to the following analyses; pasting 

properties, texture, total starch content, swelling power, Fourier 

transform infrared (FTIR) spectroscopic analysis and Field emission 

scanning electron microscopy (FESEM). 

Determination of Total Starch Content 

The total starch content was determined by gravimetric method 

described by the Association of Official Analytical Chemists (AOAC). 

 

Determination of Swelling Power, Solubility and Expanding Capability 

The modified GST starch samples (1.0 g) were mixed with 50 mL of 

distilled water and heated at 90°C for 30 min. The gelatinized samples 

were then cooled to room temperature and centrifuged at 1000 g for 20 

min. The supernatant was dried at 110°C to a constant weight to 

quantify the soluble fraction. The solubility was expressed as the 

percentage (%) of dried solid weight based on the weight of the dry 

sample. The swelling power was represented as the ratio of the weight 

of the wet sediment to the weight of the initial dry sample (g/g), while 

the expanding capability was indicated as the ratio of the overflow 

volume of the distilled water to the constant weight of the dry 

supernatant (mL/g).31 

 

Pasting Analysis 

The pasting properties of the starch were tested using a Rapid Visco 

Analyzer (RVA-TecMaster, Macquarie Park, Australia) with the 

RVATM General Pasting Method STD2 procedure. Modified starch 

samples (3.5 g, 14% moisture content) were mixed with 25 g of distilled 

water in a disposable aluminium RVA canister. The sample was then 

spun at 160 rpm (500C) for 1 min, heated to 95oC, and held at this 

temperature for 5 min, then allowed to cool to 50oC in 7.5 min, and held 

at 50oC for 2 min.21 

 

Fourier Transform Infrared (FTIR) Spectroscopic Analysis 

The FTIR spectra of the starch samples were obtained on a spectrometer 

(Perkin Elmer modelo Frontier, Waltham, MA) using the attenuated 

total reflection (ATR) accessory. Each FTIR spectrum was recorded in 

the wavenumber range of 4000-400 cm−1, with a resolution of 4 cm−1 

and an average of 64 scans. 

 

Field Emission Scanning Electron Microscopy (FESEM) 

FESEM system (NOVA Nano SEM 450, USA) was used to determine 

the surface morphology of the modified starch. An acceleration voltage 

of 5-30 kV was applied to obtain the best images and to minimize 

sample damage. The starch was transferred and fixed on the surface of 

a carbon tape and sputtered with a thin layer of gold for 60 s before 

FESEM imaging. The best magnification was selected to obtain clear 

and representative images.32 

 

Results and Discussion 

Properties of the modified starch (pasting properties, total starch 

content, swelling power and expanding capability) are presented in 

Table 1. 

The modified GST starch began to swell at 90.70 ± 2.11°C, and as the 

temperature rises, the viscosity increased indicating the rupture of the 

granules and the leaching of amylose from gelatinizing starch granules, 

until a peak viscosity of 326.67 ± 25.40 cP was attained (Table 1), which 

indicates the maximum swelling power and amylose leaching point of 

the granules.33,34 Low peak viscosities (˂5700 cP) as observed in this 

study indicates that the modification of the GST starch had extensively 

hydrolyzed the starch and resulted in a significant loss of granule size.35 

The low values also obtained for the other viscosity parameters such as 

the trough, setbacks and final viscosity confirm that the native GST 

starch has undergone extensive hydrolysis. The appearance of very 

rugged aggregates in the microstructure of the starch also indicates that 

most of the smooth amorphous surfaces of the starch have also been 

hydrolysed by the acid causing defects to the denser crystalline structure 

of the granule.  
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The modification of GST starch by acid hydrolysis resulted in a GST 

starch with low total starch content of 46.86 ± 1.34%, low swelling 

power of 4.22 ± 0.58 g/g, solubility of 5.73 ± 0.42% and an expanding 

capacity of 15.9 ± 2.15 mL/g (Table 1). Native GST has been found to 

have high carbohydrates content of 89.58% in which 68.43% of it is 

total starch.2 Out of the 68.43% total starch content, GST had 15.58% 

amylose and 52.86% amylopectin.2 The acid hydrolysis of the GST 

starch has considerably reduced the total starch content to 46.86 ± 1.34% 

with an amylose content of 13.02 ± 0.22% and 33.84 ± 1.12% 

amylopectin.  

The low swelling power is a reflection of the low amylose-amylopectin 

ratio where the amylose content has been considerably hydrolyzed by 

the acid leaving more branched amylopectin content, resulting in starch 

with more branched structure and lower swelling and expanding 

capabilities.36 The solubility of the acid modified GST starch (5.73 ± 

0.42%) was apparently within the normal range of solubility of 

starches.37 As food starch, the proportion of amylose-amylopectin and 

low swelling power indicate that the modified GST starch is adequate 

for certain applications such as simple thickeners in liquid food products. 

If a denser gel matrix is desired from the GST starch such as for use as 

thermoplastic starch (TPS), and bioplastics,38 then acid hydrolysis may 

not be the modification method of choice. In this case, other methods of 

modifications which might have more positive impacts on the gel 

strength and swelling power such as heat moisture treatment or cross-

linking methods should be considered.39,40    

The microstructure of the acid-modified GST starch as presented in 

Figure 1 show a rigid polygonal rock-like granule with sharp edges. 

After acid treatment the starch granules lost the smooth rounded granule 

structure. Some larger aggregates were found to retain the smooth 

rounded surface of the once ellipsoidal granules. The acid hydrolysis is 

a process where the acid donates its hydrogen ions to the oxygen atoms 

in the glycosidic bonds of the starch until the bonds are hydrolyzed. This 

process begins from the outermost surface of the amorphous granules 

and works its way through to the dense crystalline regions.39 The acid 

modification method has the potential to excessively hydrolyze the 

glycosidic bonds, which could completely remove the amorphous 

regions, and at a high concentration of strong acids may even 

completely hydrolyze the dense crystalline regions causing structural 

defects to the granules and rapid amylopectin degradations.39,40  

The FTIR analysis of the acid-modified GST starch showed a noticeable 

broad peak of hydroxyl groups of starch amylose at 3278.77 cm-1 

(Figure 2a). This broad band peak is consistent with the findings on 

starch amylose spectra with vibrational frequencies of -OH groups 

generally below 3800 cm-1 in starch containing amylose and 

amylopectin as the main polymer backbone.34 Another consistent 

occurrence is the peak at 2927.10 cm-1 (Figure 2a) which correspond to 

the C-H stretch vibrations of the hydrocarbon skeleton of the amylose 

and amylopectin structure. The FTIR spectrum of a study with 

acetylated wild cassava (Ampelocissus Africana) tuber starch also 

indicated major peaks corresponding to O-H and C-H stretching 

vibrations.41 It is important to note that the acid modification of GST 

starch using citric acid followed by neutralization with sodium 

hydroxide resulted in the reduction of the GST starch construct to 

amylose unit (C6H10O5)n, production of sodium citrate (C6H5Na3O7) 

(Figure 2b) and sodium citrate dihydrate (C6H5O7Na3.2H2O) (Figure 

2c). This confirms the hydrolytic breakdown of the glycosidic bonds in 

the starch molecule.34,39,40  

 

Conclusion 

GST tuber (corm) is a rich source of carbohydrate, with a large 

proportion of it being starch. Native GST starch is a starch with a high 

amylose-amylopectin content, large smooth roundish granules and 

considerable gelling properties. The native GST starch that has gone 

through acid treatments or acid hydrolysis as shown in this study 

resulted in a modified GST starch with lower starch content and 

swelling power. The amylose and amylopectin of the modified starch 

was observed to be much lower than the initial amylose content and 

amylopectin content of the native starch.  The physico-chemical 

performance of the modified GST starch makes it potentially suitable 

for use as thickeners in liquid foods. However, the utilizations of GST 

starch in conditions where a more rigid gel structure is required would 

require a different approach in modifying the native GST starch 

structure. 

 

Table 1: Physico-chemical Properties of Modified Giant 

Swamp Taro (GST) Starch 
 

Parameter         Value Unit 

Peak viscosity 326.67 ± 25.40 cP 

Trough viscosity 217.67 ± 4.73 cP 

Breakdown viscosity 401.00 ± 48.54 cP 

Final viscosity 388.00 ± 142.94 cP 

Set back viscosity 96.67 ± 41.68 cP 

Peak time 4.91 ± 0.10 min 

Pasting temperature 90.70 ± 2.11 C 

Swelling power 4.22 ± 0.58 g/g 

Solubility 5.73 ± 0.42 % 

Expanding capability 15.9 ± 2.15 mL/gram 

Amylose 13.02 ± 0.22 % 

Amylopectin 33.84 ± 1.12 % 

Total starch 46.86 ± 1.34 % 

 

   
200x 1000x 5000x 

Figure 1: Microstructure of Acid-Modified Giant Swamp Taro (GST) Starch 
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Figure 2: FTIR Spectra of (A): Modified Giant Swamp Taro (GST) Starch, (B): Sodium Citrate, (C): Sodium Citrate Dihydrate 
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