Tropical Journal of Natural Product Research

Available online at <u>https://www.tjnpr.org</u>

Mechanisms of Vasodilation Induced by Medicinal Plants: A Mini-Review

Anthony B. Ebeigbe * and Olufunke O. Arishe

Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria.

ARTICLE INFO	ABSTRACT			
Article history:				
Received 04 August 2017	Medicinal plants are commonly used for the treatment of cardiovascular diseases; however, there			
Revised 07 September 2017	is a paucity of information on their mechanisms of action. Some antihypertensive medicinal			
Accepted 08 September 2017	plants have been reported to act like vasodilator drugs, through a variety of cell signalling			
Published online 09 September 2017	processes involving modulation of endothelial and vascular smooth muscle functions. Since			
Keywords: Medicinal plants, Vasodilation, Endothelium, Smooth muscle	endothelial dystunction as well as increased peripheral vascular resistance are known to b associated with hypertension, this review highlights key cell signalling processes involving endothelium-derived factors as well as cellular Ca ²⁺ homeostasis that may be used to characteriz the vasodilator actions of medicinal plants.			

Introduction

Medicinal plants have continued to be a vital source of natural products for the management of diseases. The use of medicinal plants in the treatment of cardiovascular diseases¹ has gained significant prominence in recent times, for a number of reasons, including the following: it is cheaper than orthodox medicines and has fewer harmful side effects.^{2,3} Herbal medicines are commonly classified as Complementary and Alternative Medicine (CAM); indeed, they are widely used in both developed and developing countries.⁴ They also constitute a rich source of bioactive metabolites for drug development in the pharmaceutical industries.^{5, 6}

A major determinant of increased arterial blood pressure in hypertension is the rise in peripheral vascular resistance, resulting from abnormal vasoconstriction and increased vascular tone. This is also associated with impaired ability of vessels to dilate.^{7, 8} Vasodilator drugs constitute a class of drugs commonly used in antihypertensive conditions.

In this presentation, we discuss possible cellular mechanisms, based on experimental findings, by which some commonly used medicinal plants ameliorate blood pressure through vasodilator mechanisms involving relaxation of vascular smooth muscle.

Vasodilator mechanisms

The mechanistic pathways for the action of vasodilator agents involve the interplay of a variety of cell signalling processes which regulate endothelial as well as vascular smooth muscle function.

Vascular endothelium

Endothelial dysfunction has been widely implicated in the pathogenesis of arterial hypertension. Endothelium-derived vasoactive substances include the following: vasodilators (nitric oxide prostacyclin, endothelium-derived hyperpolarizing factors, adrenomedullin, bradykinin, thrombin) and vasoconstrictors (angiotensin II, endothelin-1, vasoconstrictor prostanoids).

*Corresponding author. E mail: anthony.ebeigbe@uniben.edu Tel: +234 802 622 9266

https://doi.org/10.26538/tjnpr/v1i3.2

 $\ensuremath{\textcircled{\sc 0}}$ 2017 Natural Product Research Group, University of Benin. All rights reserved.

Agents which elicit endothelium-dependent vasorelaxation do so by causing vasodilation or inhibition of vasoconstriction through the release of endothelium-derived nitric oxide or other vasodilators released from the endothelium. Endothelium-derived relaxing factors (EDRFs) as well as endothelium-derived contracting factors (EDCFs) elicit their vascular actions through interaction between the endothelium and vascular smooth muscle cells.⁸ Responses elicited by endothelium-derived relaxing factors are usually studied, *in vitro*, in arterial rings precontracted with phenylephrine or noradrenaline. In endothelium-denuded rings, endothelium-dependent relaxation response to acetylcholine (Ach) is impaired.^{8, 9} It has been extensively reported that in endothelium-intact rings, Ach-induced relaxation is completely reversed by NG-nitro-L-arginine-methylester (L-NAME); a selective inhibitor of nitric oxide synthase.¹

In vascular tone regulation, both endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs) produce their effect via interaction between the endothelium and vascular smooth muscle cells. Endothelial factors that are most commonly held to account for the actions of vasodilator drugs, which may also explain the actions of vasodilator medicinal plants (Table 1), include: nitric oxide (NO) produced by endothelial NO synthases (eNOS), prostaglandins (PGI₂ and PGE₂), and endothelium-derived hyperpolarizing factors (EDHF). Endothelium-derived hyperpolarizing factors consist of a group of molecules, including: C-natriuretic peptide, hydrogen peroxide, carbon monoxide, hydrogen sulphide, epoxyeicosatrienoic acids and K⁺.

Vascular smooth muscle

The contraction/relaxation process in vascular smooth muscle is dependent on changes in cytosolic Ca²⁺ levels [Ca²⁺]_i. Drugs which alter transmembrane Ca²⁺ movement are commonly employed therapeutically, for the management of cardiovascular disorders. Also, a number of medicinal plants reduce vascular smooth muscle tone through interference with Ca²⁺ homeostasis (Table 1). Cell signalling pathways (mediating the actions of vasodilator drugs), which have been extensively investigated include the following: Voltage-operated calcium channel, VOCC; receptor-operated calcium channel, ROCC; store-operated calcium channel, SOCC; as well as the Sarco(endo)plasmic Reticulum Calcium ATPase, SERCA.^{8, 20-22}

Medicinal	Classification	Active Ingredients	Experimental	Effective Dose	Mode of Action
Plant			Model		
Allium	Alliaceae or Liliaceae	Allicin., S-allyl cysteine	Adult rat	10 and $20 \mu l/$	Stimulates NO production;
sativum			cardiomyocytes	4ml cell culture	increase cellular levels of
				medium	$H_2S.^{10}$
Artocarpus	Family: Moraceae;	flavonoids, stilbenoids,	Isolated guinea pig	0.71–4.26	α -adrenoceptor and
altilis	Common name:	arylbenzofurons and Jacalin	aortic rings	mg/mL	Ca ²⁺ channel antagonism. ¹¹
	Breadfruit.				
Capparis	Family: Capparaceae;	Flavonoids, glucosiolates	Anaesthetized rats.	1-10 mg/kg	Direct vasorelaxation and
cartilaginea	Common name: Lasaf.	and rutin			cardio-inhibition; non-
					adrenergic, non-
					cholinergic.12
Carum	Family: Umbelliferae;	calcium antagonists	Isolated rabbit aorta	0.1-3.0 mg/ml	Ca ²⁺ channel antagonism. ¹³
copticum	Common name: Ajwain				
Daucus	Family: Umbelliferae;	coumarin glycosides coded	NMT anesthetized	1-10 mg/kg;	Ca ²⁺ channel antagonism. ¹⁴
carota	Common name: Carrot.	as DC-2 and DC-3.	rats; rabbit aorta	10–200 µg/ml	
Hibiscus	Family: Malvaceae;	phenolic acids and	Experimentally	20 mg/kg	Endothelium-dependent
sabdariffa	Common name: Roselle	anthocyans	induced		vasorelaxation.15
			hypertensive rats.		
Moringa	Family: Moringaceae;	thiocarbamate and	Normotensive	3 and 10	Direct hypotensive effect. ¹⁶
oleifera	Common name:	isothiocyanate glycosides	anesthetized Wister	mg/kg),	
	Murungai		rats		
Musanga	Family: Cecropiaceae;	flavonoids, alkaloids,	Anesthetized	10 mg/kg and	ACE Inhibition;
cecropiodes	Common name:	tannins, phlobatannins,	Sprague-	40 mg/kg	endothelium-dependent
	Umbrella tree, Cork	glycosides,	Dawley rats		vasorelaxation.9, 17
	Wood		Isolated rat aorta		
Ocimum	Family: Lamiaceae;	Rutin, quercetin, and	Biochemical	IC _{50:} 29.44	ACE Inhibition. ¹⁸
basilicum	Common name: Sweet	quercitrin (flavonoids);	enzyme assay	µg/mL	
	basil.	caffeic, chlorogenic, and			
		gallic acids			
Phyllanthus	Family: Euphorbiaceae;	Phenolic Acid	anesthetized NMT	5-80 mg/kg	muscarinic receptor-
amarus	Common name: Nela		male		mediated vasorelaxation;
	nelli.		rabbits		Ca2+ channel antagonism.19

Table 1: Selected medicinal plants with vasodilator activit	ty
---	----

Vasorelaxants which act through interference with Ca^{2+} influx via VOCC or ROCC are usually differentiated using relaxation responses of isolated arterial rings precontracted with high K⁺ (VOCC) or phenylephrine (ROCC).²² Some studies have reported that medicinal plants may induce vasodilation by inhibiting Ca^{2+} influx, as well as the release from intracellular stores.²³

In rat mesenteric arteries, baicalin, a flavonoid compound isolated from *Scutellaria baicalensis*²² was shown to significantly reduced the increase in Ca²⁺ induced by stimulation with Angiotensin II, vasopressin and endothelin, by a mechanism linked with inhibition of lipoxygenase biosynthesis and release of vasoconstrictor prostaglandins. It was also shown to abolish contractions induced by large-conductance Ca²⁺ activated K⁺ channel (BKCa channel), VOCC activator, Bay K8644 and protein kinase C activator PMA-induced contractions. Other important signalling transducers through which drugs modulate vascular smooth muscle contraction include cAMP and the cGMP pathways; their levels are known to be elevated by vasorelaxants.²⁴

The use of inhibitors of Ca^{2+} release from intracellular stores is of great value in assessing signalling processes involved in the action of vasodilator compounds. Commonly used inhibitors include gandolinium, which inhibits SOCC and tharpsigargin, which inhibits SERCA.⁸

Inhibition of the SERCA $pump^{25}$ results in an increase in intracellular $\mathrm{Ca}^{2+}.$

Conclusion

In conclusion, mechanisms of vasodilation induced by medicinal plants are reasonably characterized through techniques that evaluate endothelial and vascular smooth muscle cell signalling processes. The use of appropriate pharmacologic antagonists and modulators of endothelial and vascular smooth muscle functions provides specific insight into the involvement of endothelium-derived factors as well as cellular Ca^{2+} homeostasis.

Conflict of interest

The authors declare no conflict of interest.

Authors declaration

The authors hereby declare that the works presented in this article are original and that any liability for claims relating to the content of this article will be borne by them.

References

- 1. Al Disi SS, Anwar MA, Eid AH. Anti-hypertensive herbs and their mechanisms of action: part I. Front Pharmacol. 2016; 6:323.
- 2. Frishman WH, Beravol P, Carosella C. Alternative and complementary medicine for preventing and treating cardiovascular disease. Disease-a-Month. 2009; 55(3):121-92.
- 3. Tabassum N, Ahmad F. Role of natural herbs in the treatment of hypertension. Pharmacog Rev. 2011; 5(9):30.
- 4. World Health Organization Commission on Social Determinants of Health, World Health Organization. Closing the gap in a generation: health equity through action on the social determinants of health: Commission on Social Determinants of Health final report. World Health Organization; 2008.
- Pan Y, Tikekar RV, Nitin N. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds. Int J Pharm. 2013; 450(1):129-137.
- Luo Y, Wang TT, Teng Z, Chen P, Sun J, Wang Q. Encapsulation of indole-3-carbinol and 3, 3'-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chem. 2013; 139(1):224-230.
- 7. Cohn JN, McInnes GT, Shepherd AM. Direct-Acting Vasodilators. The J Clin Hypertension. 2001; 13(9):690-692.
- Loh YC, Tan CS, Ch'ng YS, Ahmad M, Asmawi MZ, Yam MF. Overview of antagonists used for determining the mechanisms of action employed by potential vasodilators with their suggested signaling pathways. Molecules. 2016; 21(4):495.
- Kamanyi A, Bopelet M, Aloamaka CP, Obiefuna PC, Ebeigbe AB. Endothelium-dependent rat aortic relaxation to the aqueous leaf extract of Musanga cecropioides. J Ethnopharmacol. 1991; 34(2-3):283-286.
- 10. Louis XL, Murphy R, Thandapilly SJ, Yu L, Netticadan T. Garlic extracts prevent oxidative stress, hypertrophy and apoptosis in cardiomyocytes: a role for nitric oxide and hydrogen sulfide. BMC Comp Alt Med. 2012; 12(1):140.
- Nwokocha CR, Owu DU, McLaren M, Murray J, Delgoda R, Thaxter K, McCalla G, Young L. Possible mechanisms of action of the aqueous extract of Artocarpus altilis (breadfruit) leaves in producing hypotension in normotensive Sprague– Dawley rats. Pharm Bio. 2012; 50(9):1096-1102.
- Gilani AU, Aftab K. Hypotensive and spasmolytic activities of ethanolic extract of Capparis cartilaginea. Phytother Res. 1994; 8(3):145-148.
- Gilani AH, Jabeen Q, Ghayur MN, Janbaz KH, Akhtar MS. Studies on the antihypertensive, antispasmodic, bronchodilator and hepatoprotective activities of the Carum copticum seed extract. J Ethnopharmacol. 2005; 98(1):127-135.

- Gilani AH, Shaheen F, Saeed SA, Bibi S, Sadiq M, Faizi S. Hypotensive action of coumarin glycosides from Daucus carota. Phytomed. 2000; 7(5):423-426.
- Adegunloye BJ, Omoniyi JO, Owolabi OA, Ajagbonna OP, Sofola OA, Coker HA. Mechanisms of the blood pressure lowering effect of the calyx extract of *Hibiscus sabdariffa* in rats. Afr J Med Sci.1996; 25:235–238.
- Faizi S, Siddiqui BS, Saleem R, Aftab K, Shaheen F, Gilani AH. Hypotensive constituents from the pods of *Moringa oleifera*. Planta Med. 1998; 64:225–228.
- Adeneye AA, Ajagbonna OP, Mojiminiyi FB, Odigie IP, Ojobor PD, Etarrh RR, et al. The hypotensive mechanisms for the aqueous stem bark extract of *Musanga cecropioides* in Sprague-Dawley rats. JEthnopharmacol. 2006; 106:203–207.
- Irondi EA, Agboola SO, Oboh G, Boligon AA. Inhibitory effect of leaves extracts of *Ocimum basilicum* and *Ocimum gratissimum* on two key enzymes involved in obesity and hypertension in vitro. J Intercult Ethnopharmacol. 2016 5(4):396-402.
- 19. Amaechina FC, Omogbai EK. Hypotensive effect of aqueous extract of the leaves of *Phyllanthusamarus* Schum and Thonn (Euphorbiaceae) Acta Pol Pharm. 2000; 64:547-552.
- Bolton TB. Mechanisms of action of transmitters and other substances on smooth muscle. Physio Rev. 1979; 59(3):606-718.
- Ebeigbe AB, Aloamaka CP. Mechanism of hydralazineinduced relaxation of arterial smooth muscle. Cardiovas Res. 1985; 19(7):400-405.
- 22. Liu C, Huang Y. Chinese Herbal Medicine on Cardiovascular Diseases and the Mechanisms of Action. Front Pharmacol. 2016; 7.
- Kwan CY, Leung YM, Kwan TK, Daniel EE. Tetrandrine inhibits Ca²⁺ release-activated Ca²⁺ channels in vascular endothelial cells. Life Sci. 2001; 68: 841-847.
- 24. Tian L, Song Y, Xing M, Zhang W, Ning G, Li X, Yu C, Qin C, Liu J, Tian X, Sun X. A novel role for thyroid-stimulating hormone: Up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatol. 2010; 52(4):1401-1409.
- El-Najjar N, Kulkarni RP, Nader N, Hodeify R, Machaca K. Effects of Hyperglycemia on Vascular Smooth Muscle Ca²⁺ Signaling. Biomed Res Int. 2017; 2017:3691349.