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Introduction 

       It is generally believed that men can reproduce their kind even at old 

age, unlike the women whose fecundity decline sharply by the fourth 

decade of life. The changing pattern of men to have children at old age is 

worrisome because of the potential risk of producing genetically defective 

sperm and transmitting germ-line mutations. Male fertility may be affected 

by senescence even though spermatogenesis continues into old age [1-3]. 

But the potential risk of abnormal pregnancies, production of genetically 

defective spermatozoa and transmitting germ-line mutations have not been 

sufficiently reported. Moreover, the understanding of the risk of male 

senescence on fertility and deoxyribonucleic acid (DNA) damage is 

particularly important because of older men seeking reproductive 

assistance. The reliance on modern technologies such as Intracytoplasmic 

sperm injection (ICSI) and In-vitro fertilization (IVF) techniques which 

by-pass the natural barriers against fertilization by damaged spermatozoa 
[4] and increases the chances of fatherhood are relevant contributing factors 

that necessitated this review. Faulty sperm function is about the most 

single cause of male factor infertility. The objective of this review is to 

highlight the origin and contributions of sperm DNA damage to male 

factor infertility and the need to take adequate precaution in the selection 

of spermatozoa for use in assisted reproduction procedures. 

 

The Human spermatozoon 

The sperm cell is composed of a sperm head, a sperm neck and a sperm 

tail. Whole sperm is covered by the sperm plasma membrane called 

plasmalemma.  The sperm head is composed of a nucleus and an 

acrosome. The nucleus contains sperm DNA (half number of 

chromosomes) while the acrosome has important enzymes that are vital 

for capacitation during fertilization. The sperm neck or midpiece has about 

100 sperm mitochondria which generate energy for the sperm tail. The 

sperm tail has microtubule doublets which are connected by dynein arms.  
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Germ cells mediate the transfer of genetic information from generation to 

generation and are thus pivotal for the maintenance of life. 

Spermatogenesis is a continuous and precisely controlled process that 

involves extremely marked cellular, genetic and chromatin changes 

resulting in a generation of highly specialized sperm cells. Spermatogonia 

stem cells replicate and differentiate into primary spermatocytes that 

undergo genetic recombination to give rise to round haploid spermatids [5]. 

 

 

Contributions of sperm DNA damage to fertility 

The contribution of DNA damage to male factor infertility has attracted 

more attention in recent years. This is important because half of the 

progeny’s DNA is inherited from the paternal unit. Some epidemiological 

studies have reported abnormal reproductive outcomes and transmission 

of genetic defects in men with advancing age [4,5], developmental and 

morphological birth defects[6], gene mutations[5,7], chromosomal 

abnormality[3], pregnancy loss [8] and other diseases such as prostate cancer 
[9]. Accumulating evidence has associated spermatozoa DNA damage with 

the risk of fetal development and gene mutation in progeny which include 

childhood cancer and infertility [10]. Male senescence has been linked with 

increased incidence in the production of sperm of uncommon genetic and 

chromosomal defects [3,7,11-13]. It was reported that older men make more 

spermatozoa with mutations associated with Apert syndrome and 

achondroplasia [12,14] as well as sperm DNA damage which was measured 

by high biomarker levels of DNA damage [15-18]. Similarly, significant 

association between male senescence and sperm DNA strand damage in 

non-clinical specimens of apparently healthy non-smokers has been 

reported [1]. It was observed that spermatozoa produced by older men had 

significantly higher incidence of DNA damage which was assayed in 

alkaline milieu and this represents alkali-labile DNA sites and single 

strand DNA breaks [1]. In the same report, it was observed that age did not 

correlate with sperm damage under neutral environment which was 

hypothesized to indicate double-strand DNA breaks. Similar observation 

was made by Wyrobek et al [15]. They reported age-associated effects on 

DNA fragmentation and achondroplasia mutations and not aneuploidy, 

Apert syndrome mutation or sex ratio [15,16]. 

In a study that evaluated male participants in In-vitro fertilization (IVF) 

program, it was observed that sperm DNA damage correlated positively 

with donor age and with malfunctioning of post fertilization embryo 

cleavage. It was an indication of high level of decline in the integrity of  
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sperm DNA in older male participants [17]. The three types of DNA damage 

that occur in human genome are mainly single strand breaks, double strand 

breaks and alternation of bases. 

 

Causes of Sperm DNA Damage 

The origin of Sperm DNA damage can generally be divided into two- 

Intrinsic and Extrinsic factors. 

 

1. Intrinsic factors 

(a) Defective maturation process of spermatozoa 

 Naturally, sperm cells have small amount of cytoplasm hence limited 

contents of cytoplasmic antioxidants. This inherent nature makes the 

spermatozoa to be susceptible to oxidative stress. The plasma membrane 

of sperm cells is made up of high levels of polyunsaturated fatty acids 

which help to maintain the fluidity of the membrane. Again, these 

polyunsaturated free fatty acid contents readily attract free radical injury. 

These mechanisms make worse oxidative damage of spermatozoa [18-22]. 

Sperm DNA packaging process is a highly complicated system and any 

mistake may expose the DNA to damage by means of inappropriate 

execution of any of the steps [23-28]. 

 

(b) Oxidative stress 

When there is excess generation of free radicals that exceeds the 

neutralizing potentials of naturally available cellular antioxidants, 

oxidative stress is said to occur. Studies have shown that upto 40% of 

infertile males have higher levels of reactive oxygen species (ROS) than 

fertile males, which often lead to a cascade of events of lipid peroxidation 

and damage to cellular macromolecules. The structural and natural 

composition of spermatozoa in addition to limited antioxidant availability 

makes sperm cells susceptible to oxidative stress. The presence of 

leukospermia and varicocele has been associated with elevated free 

radicals in semen. Varicocele may exacerbate seminal DNA damage 

directly through increased scrotal temperature or indirectly via increased 

generation of ROS. Conversely, leukocytoplasmia contributes to an 

increased generation and secretion of pro-inflammatory cytokines that 

could change the regulatory mechanisms of spermiogenesis and DNA 

damage [29]. 

 

(c) Abortive Apoptosis 

By this mechanism, spermatozoa with damage DNA may escape apoptosis 

and are incorporated into the gene pool. Apoptosis is a programmed cell 

death, which is a natural process  aimed at removing old and senescent 

sperm cells. During spermatogenesis, the body uses apoptosis to regulate 

the number of proliferative germ cells [30]. The Fas cell surface 

proteins(transmembrane protein that belongs to tumour necrosis factor 

family) help to control apoptosis in sperm cells. These proteins and the 

associated ligands are used to assess genetic damage in spermatozoa. 

Studies have shown high levels of these biomarkers in men with abnormal 

sperm indices [31,32]. The presence of high levels of Fas cell surface proteins 

in infertile men may be due to the failure of the Sertoli cells to activate Fas 

ligand generation and carry-out apoptosis, such that immature sperm cells 

with high levels of Fas cell surface proteins that avoided apoptosis could 

get matured and their damaged DNA enter into the gene pool [18]. 

Any fault in the natural apoptosis pathway itself involving inadequate 

caspase activation can also occur. Caspases (cysteine-aspartate proteases) 

are a group of cysteine protease family which takes part in the initial steps 

of apoptosis cascade. It was observed that if the apoptotic pathway from 

caspase 8/9 to caspase 3 (final executioner of apoptosis) to caspase-

activated deoxyribonuclease (CAD) is ineffectively or accurately carried 

out, apoptosis of the spermatozoa is inhibited [33]. When this occurs those 

spermatozoa with damaged DNA which were previously destined for 

death escape and proceed to maturation. 

 

2. Extrinsic factors 

Life style behaviours (smoking, obesity, excessive alcohol and caffeine 

consumption),inadequately treated sexually transmitted infections, 

radiation, medication and substance abuse are some of the predisposing 

external factors for sperm DNA damage. Cigarettes, medications, 

recreational drugs adversely impact sperm DNA damage, since they 

contain chemicals that are involved in DNA strand breaks or act indirectly 

through secondary oxidative methods. Some authors have reported that 

cigarette smoke can cause DNA damage in sperm cells via oxidative 

stress. Many of these chemicals and their metabolites could trigger the 

release of pro-inflammatory cytokines and the generation of ROS in 

seminal plasma. They can also cause the release of other DNA adducts [34] 

which are responsible for mis-matched pairs, improper DNA replication  

 

and incorrect protein synthesis [23,24] Drugs such as cocaine and caffeine 

can impact sperm DNA strand breaks leading to apoptosis [35]. Their 

excessive consumption has been reported to cause double strand breaks in 

sperm DNA [36]. 

 

Senescence, Infertility, oxidative stress and DNA damage 

Older men may produce more spermatozoa with DNA damage as a result 

of age-related increased generation of oxidative stress in their reproductive 

tract [37-39]. We previously reported on the major causes, burden of male 

infertility and the relevance of proper diagnosis and treatment at 

subsidized cost among Nigerians [40-44]. Oxidative stress has harmful effect 

on sperm DNA and can damage sperm DNA, mitochondrial and nuclear 

membranes [10, 43,45]. An association between oxidative stress and nuclear 

membranes has been reported [46]. Similarly, the importance of high 

antioxidant intake in the management of male factor infertility has been 

suggested. High intake of antioxidants was associated with better semen 

indices in study participants [47]. Oxidative stress can cause lipid 

peroxidation, protein dysfunction, nucleic acid oxidation and impaired 

DNA repair. These could result in gene mutation and carcinogenesis [45,48]. 

Our group previously reported high levels of seminal plasma caspase 3, 

cytochrome c and low total antioxidant capacity in infertile men in Nigeria 
[49]. Defective mitochrondrial dependent apoptotic signaling pathway may 

be an important contributing factor to infertility [49-54]. The control 

spermatogenesis is nurtured and aided by Sertoli cell and in the presence 

of large number of spermatozoa with damaged DNA, the Sertoli cells 

express FasL which induces sperm cell apoptosis by Fas/FasL pathway in 

order to maintain equilibrium necessary for normal spermatogenesis [55,56]. 

In older men with increased oxidative stress, the equilibrium mentioned 

above is not achieved. This may lead to increased rate of apoptosis, DNA 

damage and infertility [44]. High levels of DNA fragmentation and active 

caspase 3 were reported in testes of men with Sertoli cell only syndrome 

and maturation arrest [57]. 

We earlier reported lower levels of total antioxidant capacity in infertile 

than control male subjects [49]. The increased generation of ROS often 

observed in older men [37-39], may be due to several factors and include 

routine medical prescription and environmental pollutants [58]. The 

generation of ROS could be made worse by infection, prolonged stasis and 

abnormal spermatozoa, environmental and life style changes [44,45,59-61]. 

 

Oxidative stress and sperm function 

Sperm motility is about the first function to be affected by oxidative stress 

and lipid peroxidation. Studies in human and experimental animals have 

associated lipid peroxidation with abnormal sperm motility [61-63]. The 

prolongedexposure of human spermatozoa to ROS using xanthine oxidase 

as free radical generating system has shown that sperm motility is readily 

affected by oxidative attack and that hydrogen peroxide is the most 

cytotoxic oxygen specie [64-68]. The mechanism by which sperm motility is 

lost in the presence of oxidative stress is not very clear, but oxidative 

injury to axonema and decreased intracellular adenosine triphosphate 

(ATP) have been suggested [64,69-71]. Several authorshave shown that 

oxidative stress may compromise the fertilizing capacity of sperm cells 

even when motility is normal [71,72]. In this situation, it is the capacity of 

the spermatozoa topenetrate the vitelline membrane of the oocyte that is 

affected. A study of the impact of oxidative stress on sperm-oocyte fusion 

has shown a biphasic response depending on the levels of oxidants [73]. 

Some authors demonstrated that at low level of oxidative stress sperm-

oocyte fusion rates were increased supporting the hypothesis which 

suggests the role ROS play in activation of the tyrosine phosphorylation 

events that occur during sperm capacitation [74] and the importance of 

sterol oxidation in driving the efflux of cholesterol from sperm plasma 

membrane [75]. Conversely, at higher levels of oxidative stress, lipid 

peroxidation was induced in the plasma membrane and sperm-oocyte 

fusion was impaired, probably as a result of damage to acrosome which is 

involved in the fusion process between spermatozoa and oocytes [76]. 

Again, our group previously demonstrated low acrosin activity in seminal 

plasma of infertile Nigerians compared to fertile subjects [77]. Acrosin is a 

sperm acrosomal enzyme that is involved in acrosomal reaction during 

sperm-oocyte fusion, that is, the union of spermatozoa to the zona 

pellucida and penetration of spermatozoa through the zona pellucida. The 

acrosomal membrane of the sperm head has been suggested to possess 

specific molecules for joining to the zona pellucida before penetration of 

the oocyte. This enzyme hydrolyzes the oocyte membrane to provide 

access for spermatozoa to penetrate the interstices of the corona radiata at 

adequate calcium environment [78-80]. This process may be affected by 

senescence. From our previous report, it was observed that seminal plasma  
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calcium levels decreased with decreasing concentrations of sperm density 
[81].  

 

Impact of senescence on Progeny due to oxidative DNA Damage 

Association between paternal age and abnormalities ofprogeny via 

oxidative DNA damage in spermatozoa was aptly described in a study 

using senescence-accelerated mouse prone 8 (SAMP8) [82]. The 

experimental mouse is a strain that possesses a suite of naturally occurring 

mutations resulting in accelerated senescence characteristics (phenotype) 

occasioned by oxidative stress. This oxidative stress was further enhanced 

by a mutation in the Ogg1 gene, significantly decreasing the ability of the 

enzymes to completely remove 8OHdG adducts. A study of the 

reproductive charateristics of the male mice revealed a significantly higher 

level of DNA damage in epididymal spermatozoa examined using alkaline 

comet assay technique. Further examination of the lesions showed that 

they were oxidative damage as occur in nature as demonstrated by the 

presence of higher levels of 8OHdG adducts in the testicular tissue and 

mature sperm cells than control strains [62,82]. Since senescence correlated 

with oxidative DNA damage of spermatozoa, it is logical to expect these 

pathologies to reflect in the incidence of morbidity in the progeny of 

ageing fathers [64]. In fact, three main types of paternal age-associated 

pathologies have been described which are miscarriage, dominant genetic 

mutations and complex neurological conditions [64]. Other paternal age-

related abnormalities include multiple endocrine neoplasias, Aper 

syndrome and achondroplasia [82,83]. These conditions occur as a result of 

replication error in the germ-line.  

As men age, the risk of mutation increases due to increased incidenceof 

replication error because the germ cells of older men experience multiple 

rounds of pre-meiotic replication and cellular iteration or repetition. 

However, the exception to this hypothesis is the fibroblast growth factor 

receptor 2 (FGFR2) mutation associated with Apert syndrome. In this case 

there is correspondence between the incidence of mutation in spermatozoa 

and the occurrence of the condition in children [84]. The underlying cause 

is not just replication error but over-expression of the mutation that caused 

the condition in the spermatozoa as a result of age-dependent clonal 

expansion, which are mutant spermatogonial stem cells that have a 

proliferative advantage over normal cells. Studies have also suggested that 

such mutations take place in clusters within the seminiferous tubules 

probably due to failures of unequal division within the germ-line [84]. 

 

Abnormal Repair of DNA damage 

Abnormal (incomplete) repair of oxidative DNA damage in the mature 

spermatozoa that escaped apoptosis and used to fertilize oocytes was 

explained as one of the causes of paternal age effect on offspring. This 

may explain the increased rate of miscarriage observed as a function of 

male senescence [85] and other various complex polygenic conditions that 

are associated with paternal age at the time of conception. Paternal age has 

also been associated with increased incidence of complex polygenic 

neurological conditions such as epilepsy, schizophrenia and autism in the 

progeny [86]. In a study conducted among Icelandic population it was 

observed that the mutation load inherited by progeny was overwhelmingly 

associated with the age of their fathers at the time of conception and the 

moment this load exceeds a certain critical level, overt abnormalities occur 

in the progeny [87]. The relationship between age-dependent increase in 

mutational load in progeny and the unusual repair of oxidative sperm DNA 

damage in the zygote is not completely understood. The potential 

contributions of a wide range of environmental and lifestyle factors 

interacting with the human genome to enhance oxidative DNA damage 

cannot be ruled out. It was reported that about 4% of new born children in 

Australia are products of artificial reproductive technique (ART) [88]. Most 

couples with infertility in Nigeria (those that can afford) are increasingly 

embracing the use of ART to resolve their problem. Since about 40-50% 

of this condition is occasioned by male factor infertility, careful selection 

of spermatozoa is needed to avoid mutations which would not have taken 

place if natural method was adopted for conception. Recent studies have 

reported that the incidence of birth defects following ART has doubled 

and imprinting disorder are frequently seen in children conceived in-vitro 
[89,90]. Some authors observed that children born by ART were more likely 

to be admitted to neonatal intensive care unit, to stay in hospital longer 

than those naturally conceived [86]. Abnormal patterns of retinal 

vascularization and high incidence of undescended testicles in boys 

conceived by Intra cytoplasmic sperm injection (ICSI) have been reported 
[91-93]. 

 

 

 

 

Impact of Senescence on DNA Repair processes in the Germ line 

Age exerts profound influence on DNA repair in the germ-line. The 

occurrence of oxidative injury in early stages of spermatogenesis results  

in several oxidative damages in germ cells entering meiosis and these may 

precipitate an increase in apoptosis. But milder levels of oxidative stress 

may induce compensatory mechanisms on the spermatocytes that confer  

longevity and survival of the progeny. A good example of the impact of 

paternal age is on DNA repair in the germ line is on telomere length. One 

of the ways that the germ line responds to senescence-associated oxidative 

stress is by upregulation of telomerase activity and increase the length of 

telomeres in the spermatozoa [94]. Telomere length is a paternally inherited 

trait such that children of ageing fathers confer longevity on the progeny 

since telomere length is associated with longevity [95]. This perhaps may 

be one of the few benefits of having an older father; he may confer upon 

the progeny the molecular basis for a long life [1]. Conversely, if the 

paternal germ line experienced adverse oxidative damage after meiosis 

when the telomerase can no longer increase then telomere length in the 

spermatozoa will be abnormally short and this may adversely affect the 

health of progeny conceived by ART [96]. 

 

 

Conclusion 
In order to minimize sperm DNA damage, it is important to avoid those 

extraneous factors that predispose an individual to oxidative DNA 

damage. Lifestyle modifications such as avoiding smoking, excessive 

alcohol and caffeine consumption as well as observing adequate exercise 

should be taken into consideration. It is suggested that men should 

endeavour to have their children early before old age to avoid the 

transmission of aberrant genome to their progeny. Adequate precaution 

should be taken when selecting spermatozoa to be used for fertilization 

during the process of assisted reproduction technique. 
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