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Introduction 

The Coronavirus disease 2019 (COVID-19) pandemic 

currently affects 213 countries and territories around the world. As of 

April 15, 2020, the World Health Organization (WHO) has reported 

about 2,000,000 global cases of COVID-19 with 128,886 deaths.
1
 

COVID-19 is an infectious disease caused by a 2019-novel 

coronavirus (SARS-CoV-2) which spreads through the buccal and 

nasal discharges from infected persons.  The disease can be 

asymptomatic but also present a range of symptoms such as fever, dry 

cough, fatigue, body pains, sore throat, diarrhea, headache, and loss of 

smell or taste. In severe cases, patients suffer pneumonia, severe acute 

respiratory syndrome, multi-organ failure, and death.
2
 The WHO is yet 

to approve any vaccine or antiviral drug for the prevention or 

treatment of coronavirus infections. However, CoV-associated 

pathologies have been treated with some existing broad-spectrum 

antiviral drugs. Most treatment strategies focus on the management of 

symptoms and supportive therapy.
3,4

 

Coronaviruses (CoVs) have been known to infect a wide variety of 

mammals and birds causing respiratory and enteric diseases. They are 

classified into four different genera namely the alpha-, beta-, gamma-, 

and delta-CoVs. The CoV genome is susceptible to frequent mutations 

and recombination which can give rise to new strains of varying 

virulence.
5 
There are seven strains of human CoVs and their major  
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predilection site is the upper and lower respiratory tract.
6
 CoVs were 

known to cause milder disease but the previous epidemics of high-

morbidity caused by the SARS-CoV in 2003 and MERS-CoV in 2012, 

highlighted their adaptive potential to the changing environmental 

conditions and as such they are now classified as “emerging viruses”.
7 

CoVs are enveloped, positive-sense, single-stranded RNA viruses with 

a genome size ranging between 26.2 and 31.7 kb.
8
 They are named 

after their crown-like appearance in electron micrographs, which is 

caused by the club-shaped peplomers that radiate outwards from the 

viral envelope.
9,10

 SARS-CoV-2 belongs to the β genus and contains 

Structural and Non-Structural Proteins (NSP). The structural proteins 

include the Spike, Envelope, Membrane, and Nucleocapsid proteins.
11

 

The spike surface glycoprotein promotes host attachment, and virus-

cell membrane fusion during virus infection and it is a major target of 

neutralizing antibodies.
12,13

 

One of the NSP which is the Helicase enzyme is a motor protein that 

utilizes the energy derived from nucleotide hydrolysis to unwind 

double-stranded nucleic acids into two single-stranded nucleic acids 

along the 5’ – 3’ direction.
14

 Helicases are not only involved in the 

unwinding of nucleic acids during recombination, replication, and 

repair. Recent studies have also shown that helicases are involved in 

several other biological processes such as transcription, translation, 

RNA stability, mRNA splicing, mRNA export, packaging of nucleic 

acids into virions, and mitochondrial gene expression.
15,16

 Their 

validity as drug targets was confirmed when compounds that inhibit a 

helicase encoded by Herpes Simplex Virus was shown to block viral 

replication and disease progression in animal models.
17

 

The SARS-CoV-2 Helicase has 596 amino acids and adopts a 

triangular pyramid shape comprising of 5 domains.
18

 They include two 

RecA-like domains at the C-terminal Helicase core, the beta-barrel 

domain, the N-terminal Zinc Binding Domain, and the interconnecting 

Stalk domain.
18

 The active site of SARS-CoV-2 Helicase has residues 

which are involved in NTP hydrolysis.
19 
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The Coronavirus Disease 2019 (COVID-19) pandemic ravages the globe causing unprecedented 

health and economic challenges. As the world prospects for a cure, scientists are looking 

critically at strategic protein targets within the SARS-CoV-2 that have therapeutic significance. 

The Helicase is one of such targets and it is an enzyme that affects all facets of the SARS-CoV-2 

RNA metabolism. This study is aimed at identifying small molecules from natural products that 

have strong binding affinity with and exhibit inhibitory activity against an allosteric site (Pocket 

26) on the SARS-CoV-2 Helicase. The molecular docking simulations of SARS-CoV-2 Helicase 

(QHD43415-12.pdb) against a library of small molecules obtained from edible African plants 

was executed using PyRx. Triphenylmethane, which had a docking score of -7.4 kcal/mol on 

SARS CoV-2 Helicase was chosen as a reference compound. Based on the molecular descriptors 

of the compounds as provided by PubChem, a virtual screening for oral bioavailability was 

performed. Further screening for molar refractivity, pharmacokinetic properties, and bioactivity 

were performed using SwissADME, pkCSM, and Molinspiration webservers respectively. 

Molecular dynamic simulation and analyses were performed using the Galaxy webserver which 

uses the GROMACS software. The lead compounds are Gibberellin A12, A20, and A51 

obtained from Green peas and the Okra plant. Gibberellin A20 and A51 were predicted to 

perform better than the standard and Gibberellin A51 showed the greatest inhibitory activity 

against SARS-CoV-2 Helicase.  
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This study is aimed at identifying potential inhibitors of an allosteric 

site (Pocket 26) on the SARS-CoV-2 Helicase
20

 and a known helicase 

inhibitor, Triphenylmethane which is a basic structural component of 

synthetic dyes is used as the reference compound.
21 

However, other 

allosteric sites abound, one of which is pocket 25 which the antiviral 

drug, Darunavir inhibits.
22 

Natural compounds,
23 

synthetic 

compounds,
24

 and re-purposed drugs
22 

have been empirically proven 

or computationally predicted to be small-molecule helicase inhibitors. 
25

  

 

Materials and Methods 

Preparation, analysis and validation of target protein structure 

The 3D structure of SARS-CoV-2 helicase in Protein Data Bank (pdb) 

format (ID: QHD43415_12.pdb) was obtained from I-TASSER online 

server with an estimated Template Modelling (TM) score of 0.99. This 

webserver is used for prediction of protein structure and function.
26

 

The architecture of the target protein was revealed by the Volume, 

Area, Dihedral Angle Reporter (VADAR 1.8) webserver. The target 

was analysed using the Ramanchandran plot obtained from the 

MolProbity web server.
27

 

 

Ligand preparation 

One thousand and forty eight (1,048) compounds obtained from 

natural products such as spices, edible fruits, and vegetables were 

downloaded from PubChem.
28

 Lipinski’s Rule of Five and Veber’s 

rules were used for the pre-screening of all the compounds in the 

library i.e. molecular weight ≤ 500, hydrogen bond donor (HBD) ≤ 5, 

hydrogen bond acceptor (HBA) ≤ 10, logP ≤ 5, polar surface area 

(PSA) ≤ 140, and rotatable bonds ≤ 10.
29

 Their 3D structures and that 

of the reference compound, Triphenylmethane (PubChem CID 10614) 

were downloaded from PubChem in sdf format.
28

 

 

Molecular docking and virtual screening 

The reference compound, and 1,048 other Lipinski and Veber rule-

compliant compounds were uploaded to the virtual screening software, 

PyRx (Python Prescription) 0.8 using the Open Babel plug-in tool.
30

 

The ligands were subjected to energy minimization and then 

transformed from structure-data file (sdf) to Protein Data Bank, Partial 

Charge, & Atom Type (pdbqt) format in preparation for molecular 

docking. All ligands and the reference compound were docked against 

the target protein, SARS-CoV-2 Helicase using AutoDock Vina plug-

in tool in PyRx.
31

 The grid parameters for docking with the target 

protein were set at: Centre X = 79.7763, Y = 79.8336, Z = 79.8336 

and Dimensions (Angstrom): X = 89.9405, Y = 65.6233, Z = 77.6795. 

For stable conformation, Universal Force Field (UFF) and the 

conjugate gradient descent was used as the energy minimization 

parameter and optimization algorithm respectively. 

The docking results were exported in comma-separated values (csv) 

format to Microsoft Excel for filtering. Only ligands that had binding 

affinity scores less than that of the reference compound, 

Triphenylmethane (-7.4 kcal/mol) were selected. The prediction of 

pharmacokinetic properties, molar refractivity, and bioactivity of all 

ligands were performed using pkCSM, SwissADME, and 

Molinspiration respectively.
32-,34

 

 

Analysis of the binding site 

Docked poses of all the front-runner compounds were superimposed 

with the target protein using the Pymol software.
35

 The resultant 

structures were evaluated using the Protein-Ligand Interaction 

Profiler (PLIP) webserver.
36

 All binding pockets of SARS-CoV-2 

Helicase were analysed with Fpocket online server.
37

 The three-

dimensional depictions of the best docked complexes were analysed 

using hydrogen bonds, salt bridges, and other protein-ligand 

interactions.
36

 

 

Molecular dynamics simulations (MDS) and analyses 

The Galaxy (versions 2019.1 and 2019.1.4) supercomputing server 

which uses the GROMACS software was used to perform the MDS of 

the Apo and Holo structures of SARS-CoV-2 Helicase.
38 

The 

LigParGen server was used for the ligand parameterization of the lead 

compounds with OPLS-AA/1.14*CM1A as force field parameter.
39

 A 

2-nanoseconds MDS was carried out for all the Apo and Holo 

structures with 1,000,000 steps after solvation, energy minimization, 

and equilibration (NVT and NPT). MDS analyses of trajectory 

parameters such as the Root Mean Square Deviation of atomic 

positions (RMSD), per residue Root Mean Square Fluctuation 

(RMSF) of protein backbone, Principal Component Analysis (PCA), 

and Dynamical Cross-Correlation Matrix (DCCM), were determined 

using the BIO3D tool on the Galaxy super-computing platform.
40

 

 

 

Results and Discussion 

Structural analysis, validation and preparation of SARS-CoV-2 

Helicase (QHD43415_12.pdb) 

The Apo structure of SARS-CoV-2 Helicase (QHD43415_12.pdb) has 

601 amino acids with the following constituent secondary structures: α 

helix 27%; beta sheets 31%; Coil 41%; and Turns 15%. (Figure 1). 

The Total Accessible Solvent Area (ASA) is 26083.1Å². The 

geometry of SARS-CoV-2 Helicase (QHD43415_12.pdb) reveals 

6.88% poor rotamers, 82.79% favored rotamers, 4.67% Ramachandran 

outliers, 85.48% Ramachandran favored, 3.34% Carbon Beta 

deviations >0.25Å, 0.00% bad bonds, and 0.81% bad angles (Figure 

2). The Peptide omegas of SARS-CoV-2 Helicase 

(QHD43415_12.pdb) include 0.00% Cis Prolines and 2.83% Twisted 

Peptides. The low-resolution criteria include 6.70% CaBLAM outliers 

and 0.34% CA Geometry outliers. 

 

Chemoinformatic profile of ligands 

The application of high-throughput computer-assisted methods to 

predict the relationship between the structure, chemical properties, and 

the biological activity of a compound is indeed a valuable tool in the 

field of drug design and discovery.
41

 These drug-like properties of 

compounds would impart largely on their bioavailability and increase 

cellular uptake of biomolecules within the body.  The molecular 

descriptors of such compounds are well described by the Lipinski 

(RO5), Veber, and Ghose rules.  Put together, these rules state that 

hydrogen bond acceptors should be ≤ 10, hydrogen bond donors 

should be ≤ 5; Log P should be ≤ 5, molecular weight should be ≤ 500 

g/mol; the polar surface area should be ≤ 140Å², molar refractivity 

should be between 40-130 cm³, and the number of rotatable bonds 

should be < 10.
42-44

 

Our results prove that Gibberellin (GA)12, GA20, and GA51 had no 

violation of the Lipinski (RO5), Ghose, and Veber rules suggesting 

that they possess good drug permeability (Figure 3, Table 1). 

Specifically, the standard has a Log P value that violates the Lipinski 

rule. It is more lipophilic than all the lead compounds suggesting that 

it has the greatest absorbability across lipid membranes. The standard 

and the lead compounds can penetrate the Blood-Brain Barrier 

because their TPSA values are less than 90 angstroms squared.
45 

Measured by saturation, the molecular complexity of organic 

molecules is an important property in computational drug discovery. 

The lead compounds have their fraction of carbons in the sp3 

hybridization more than 0.25 while that of the standard is lower. This 

suggests the standard has the lowest saturation and hence the least 

molecular stability.
46

 

In biological assays, certain compounds (PAINS: pan assay 

interference) yield false positive response because they have 

problematic structural moieties. These compounds are considered 

promiscuous as they are frequent hitters. From Table 1, the standard 

and all the lead compounds have no PAIN alerts.
47 

The bioactivity 

scores of the standard and the lead compounds showed moderate to 

good activity against ion channel, GCPR, nuclear receptor, kinase, 

proteases, and other enzyme targets. The greatest enzyme inhibiting 

activity is seen in GA51.
48

 

 

Pharmacokinetic properties of ligands 

Traditional drug discovery process has bottlenecks. However, the 

application of in silico ADMET properties prediction to evaluate 
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potential leads at early stages of drug development is important in 

order to eliminate candidates which would have been chemically 

synthesized and biologically tested.
49

 Multi-parametric optimization 

strategies such as absorption, distribution, metabolism, 

excretion/elimination, and toxicity are applied in making and 

screening compounds in drug discovery.
49

 

The absorption parameters that ensure drugs get to their molecular 

targets include human intestinal absorption (poor: <30%), caco2 

permeability (high: > 0.9), water solubility (insoluble: -4.0 Log 

mol/L), and skin permeability (low: LogKp >−2.5). Triphenylmethane 

is insoluble in water and therefore is a poor drug candidate (Table 2). 

All predicted absorption values for the lead compounds are within 

pharmacological range.
32,50 

The pharmacokinetic indicators for distribution such as Fraction 

unbound, Volume of distribution steady state (Low: Log VDss <- 

0.15; High: Log VDss > 0.45), BBB permeability (permeable: Log 

BBB > 0.3; poor <: Log BBB <-1), and CNS permeability (permeable 

Log PS > -2; poor Log PS < -3) for the standard (i.e., 

Triphenylmethane) and all lead compounds are within acceptable 

range (Table 2).
32 

The standard and all lead compounds are not P-glycoprotein I & II 

inhibitors suggesting that these ATP-dependent cell membrane 

proteins would continue to pump foreign substances out of cells 

unhindered (Table 2). Triphenylmethane is a P-glycoprotein substrate 

which suggests it would be pumped out of the cell if it is not 

administered with a P-glycoprotein inhibitor.
32 

The inhibition of the major isoforms of cytochrome P450 enzyme 

makes for the toxic accumulation of their substrates. The predicted 

metabolic behavior of all the lead compounds shows no inhibition of 

CYP3A4, CYP1A2, CYP2C9, CYP2C19, and CYP2D6 enzymes. 

However, the standard shows inhibition of CYP1A2 and CYP2C19 

enzymes (Table 2). The standard and lead compounds are substrates of 

CYP3A4 which means that their doses would be affected either by 

induction or the inhibition of CYP3A4.
51

 

From Table 2, the predicted excretion values for Total Clearance for 

the standard and lead compounds are within pharmacological range.
32

 

All of the lead compounds and the standard are not substrates of Renal 

Organic Cation Transporter 2 (OCT2) which implies that they will not 

be eliminated by the protein from the blood into the proximal tubular 

cell.
52

 

The dose to be administered in the phase 1 of clinical trials is 

determined by the predicted maximum recommended tolerated dose. 

From Table 2, the standard has a high value (more than 0.477 log 

mg/kg/day) while the lead compounds have low maximum 

recommended tolerated dose (less than 0.477 log mg/kg/day).
32

 

 

 

 

Two important parameters in drug discovery are the Tetrahymena 

pyriformis and Minnow toxicities which are the dose required to 

inhibit 50% of the growth of T. pyriformis (IGC50), a protozoan 

bacteria and the minnow fish respectively. For T. pyriformis, when the 

pIGC50 value is greater than -0.5 log Ug/L, a compound is considered 

toxic. Therefore, the standard and all the leads show antibacterial 

properties but might not be toxic to human cells.
32 

Similarly, log LC50 

is the log of a compound to cause death of 50% of flathead Minnows. 

A value less than 0.3 log mM signifies high acute toxicity. From the 

results, the standard is toxic to Minnows while the lead compounds are 

not.
32 

The cardiotoxic and genotoxic properties of compounds is revealed by 

the hERG inhibition and AMES predictions respectively. While all the 

compounds (standard and leads) showed no AMES toxicity, only the 

standard showed hERG II inhibition properties.  This makes it a 

potentially dangerous drug candidate. The standard also showed 

dermatotoxic properties.
32

 

 

Molecular docking analyses of ligands against SARS-CoV-2 Helicase 

In modern drug design and discovery, binding affinity determination is 

very crucial in order to find a high affinity ligand that would bind to 

the target protein to inhibit its disease-associated function, catalytic 

activity or interaction with other molecules.
53

 This procedure typically 

begins with screening an initial library of compounds to 

computationally identify binders of the target protein before 

continuing with the experimental screening.
54

  

From Figure 4 and Table 3, all lead compounds have stronger binding 

affinity than the standard, Triphenylmethane and hence showed 

greater potency as drug candidates. GA A51 has the strongest binding 

affinity of -8.6 Kcal/mol. 

 

Binding site analyses 

Hydrogen bonds have ubiquitous influence in nature and play an 

important role in protein folding, protein-ligand interactions, and 

catalysis.
55-57

 By displacing protein-bound water molecules into the 

solvent, H-bonds also enhances ligand binding affinity.
58

 The length 

and orientation of the hydrogen bond are two key factors that 

determine the specificity and direction of ligand binding.
59

 

Figure 5 and Table 4 reveal that while the standard has no hydrogen 

bond, GA12, GA20, and GA51 all have hydrogen bonds with residues 

that fall within Pocket 26. GA12 forms 3 hydrogen bonds within one 

residue (LEU235) while GA20 and GA51 form two hydrogen bonds 

within two residues (PHE24 & PHE133) signifying greater stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Chemoinformatic properties of standard and lead compounds 

 Triphenylmethane GA12 GA20 GA51 

Molecular Formula C19H16 C20H28O4 C19H24O5 C19H24O5 

Molecular Weight (g/mol) 244.30 332.40 332.40 332.40 

Log P 5.30 3.90 1.20 1.70 

Hydrogen Bond Acceptors 0 4 5 5 

Hydrogen Bond Donors 0 2 2 2 

# heavy atoms 19 24 24 24 

# rotatable bonds 3 2 1 1 

TPSA (Aᵃ) 0 74.60 83.80 83.80 

Molar Refractivity 80.38 0.80 0.79 0.79 

Saturation (fraction cspᶾ) 0.05 90.52 86.18 86.14 

PAIN Alert 0 0 0 0 

GCPR ligand -0.21 0.32 0.22 0.17 

Ion channel modulator -0.17 0.14 0.23 0.21 

Kinase Inhibitor -0.57 -0.44 -0.21 -0.31 

Nuclear receptor ligand -0.15 0.80 0.49 0.67 

Protease inhibitor -0.40 0.12 0.09 0.16 

Enzyme inhibitor -0.03 0.36 0.30 0.38 
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Table 2: Pharmacokinetic properties of front-runner compounds 

 Triphenylmethane GA12 GA20 GA51 

Water solubility (log mol/L) -6.88 -2.89 -2.64 -2.73 

Caco2 permeability (log Papp in 10-6 cm/s) 1.54 1.05 1.19 1.14 

Human Intestinal absorption (% Absorbed) 98.55 100 98.91 100 

Skin Permeability (log Kp) -2.71 -2.74 -2.74 -2.74 

P-glycoprotein substrate (Yes/No) Yes No No No 

P-glycoprotein I inhibitor (Yes/No) No No No No 

P-glycoprotein II inhibitor (Yes/No) No No No` No 

VDss (human) (log L/kg) 0.26 -1.32 -0.83 -0.97 

Fraction unbound (human) (Fu) 0.16 0.22 0.42 0.29 

BBB permeability (log BB) 0.85 0.07 -0.21 -0.09 

CNS permeability (log PS) -1.11 -2.08 -0.29 -2.41 

CYP2D6 substrate (Yes/No) No No No No 

CYP3A4 substrate (Yes/No) Yes Yes Yes Yes 

CYP1A2 inhibitor (Yes/No) Yes No No No 

CYP2C19 inhibitor (Yes/No) Yes No No No 

CYP2C9 inhibitor (Yes/No) No No No No 

CYP2D6 inhibitor (Yes/No) No No No No 

CYP3A4 inhibitor (Yes/No) No No No No 

Total Clearance (log ml/min/kg) 0.20 0.46 0.42 0.42 

Renal OCT2 substrate (Yes/No) No No No No 

AMES toxicity (Yes/No) No No No No 

Max. Tolerated dose (human) (log mg/kg/day) 0.67 0.42 0.37 -0.14 

hERG I inhibitor (Yes/No) No No No No 

hERG II inhibitor (Yes/No) Yes No No No 

Oral Rat Acute Toxicity (LD50) (mol/kg) 2.03 2.46 2.05 2.10 

Oral Rat Chronic Toxicity (log mg/kg_bw/day) 0.82 2.07 2.14 2.36 

Hepatotoxicity (Yes/No) Yes Yes No Yes 

Skin Sensitization (Yes/No) Yes No No No 

T. Pyriformis toxicity (log ug/L) 0.43 0.29 0.29 0.29 

Minnow toxicity   (log mM) 0.06 0.31 1.96 1.16 

 

 
In terms of angle formed by hydrogen bonds, GA12 forms two strong 

(greater than 130°) and one weak (less than 130°) hydrogen bonds 

with the target protein. GA20 and GA51 form one weak and one 

strong hydrogen bond each.
60

 In terms of the donor to acceptor 

distance, GA12 forms two moderate (2.5-3.2 Å) and one weak (3.2-

4.0 Å) hydrogen bonds with the target protein. GA20 forms two 

moderate hydrogen bonds while GA51 forms one moderate and one 

weak hydrogen bond.
60

 

The strength and stability of the protein-ligand complexes is enhanced 

by the presence of hydrophobic interactions and salt bridges.
61

 From 

Table 5, the standard forms 4 hydrophobic interactions and one strong 

salt bond.
62

 

GA12, GA20 and GA51 forms 2 hydrophobic interactions and no salt 

bridge. These suggest that for the other protein-ligand interactions, the 

standard have a slightly more atom-efficient binding than the lead 

compounds.
63,64

 

Put together, the lead compounds show a stronger interaction with 

SARS-CoV-2 Helicase as revealed by the hydrogen bonds and binding 

affinity scores. 

 

Molecular dynamics simulation analyses  

As seen in Figures 1 and 6, comparing the crystal structure with the 

simulated apo and holo structures suggests that there is an unfolding 

of the alpha helix at residues 64, 65, and 66 during the molecular 

dynamic simulation.
65

 

 

Root mean square deviation of atomic positions (RMSD) 

RMSD is the measure of similarity between a reference and a target 

structure. It measures the variations in the distances between atoms in 

two superimposed protein structures. In protein structure prediction, 

RMSD is used for analysing protein stability and conformational 

changes. It describes the similarity of conformers.
66,67

 

Figure 7 and Table 6 suggest that there was a gradual increase in the 

RMSD of the simulated Apo protein relative to the crystal structure as 

the production time increased. It peaked at Frame 9 (2.42 Å) and 

thereafter stabilized. Throughout the trajectory, the total RMSD for 

the Apo structure is 41.05 Å while the average is 1.95 Å. While the 

RMSD values of the Apo protein appear to have stabilized with the  

 



                                              Trop J Nat Prod Res, January 2021; 5(1):165-177                         ISSN 2616-0684 (Print) 

                                                                                                                                                               ISSN 2616-0692 (Electronic)  
 

169 
© 2021 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License 

A B 

simulation time, data suggests that with more simulation time, the 

RMSD values for all the holo structures would increase. Of all the 

holo structures, the Helicase-GA51 complex has the greatest deviation 

from the reference structure. This is seen in the highest values of the 

total and average RMSD. Helicase-GA12 and Helicase-

Triphenylmethane complexes have lower total and average RMSD 

values than the Helicase-GA20. The Helicase-GA51 complex showed 

the greatest deviation to the right (most peaks within 2.00 - 2.49 A).  

The Helicase-GA20 complex also showed greater deviation to the 

right than the Helicase-GA12 complex which in turn was greater than 

the Helicase-Triphenylmethane complex (Figure 8 and Table 6). 

Put together, ligand binding with GA51 and GA20 appear to cause 

greater deviation from the reference structure than Triphenylmethane. 

The least deviation was induced by GA12. The results predict GA51 

to cause the greatest structural deviation of all the holo structures.  

 

Root mean square fluctuations (RMSF) 

Proteins undergo structural fluctuations as a result of movements of 

the alpha carbon of their residues around their equilibrium 

conformations.
68 

From Figure 9 and Table 6, the total and average 

global RMSF is greater in the Helicase-GA51 complex than all the 

other holo structures. Also, the total and average global RMSF values 

of the Helicase-Triphenylmethane complex is greater than those of the 

Helicase-GA12 and Helicase-GA20 complexes. 

The total and average regional RMSF values at Pocket 26 remained 

highest for the Helicase-GA51 complex. The values for Helicase-

GA20 complex were higher than those of the Helicase-

Triphenylmethane complex. The Helicase-GA12 complex has the 

lowest values. Similarly, the range of RMSF followed the same order 

with Helicase-GA51 and Helicase-GA20 complexes having the 

highest values. 

Put together, ligand binding with GA51 induced the greatest instability 

as seen in the global, regional RMSF values, and the range of RMSF. 

Ligand binding with GA20 also induced more instability of the SARS-

CoV-2 Helicase than the standard and this would negatively affect the 

physiological function of the enzyme.   

 

Principal components analysis 

During the MDS of a protein, new conformations are being generated 

during the trajectory. Principal component analysis (PCA) is used to 

determine the statistical significance and relationships of these 

conformations.
69

 

Of all the holo structures, the Total global motions (average of PC1, 

PC2, and PC3) was highest in Helicase-GA51 complex. Also, 

Helicase-GA20 and Helicase-GA12 complexes showed greater global 

motion than the Helicase-Triphenylmethane complex (Figure 10 and 

Table 6). 

In a similar manner, the Total regional motions (average of PC1, PC2, 

& PC3) was highest in Helicase-GA51 complex making it the most 

unstable at Pocket 26 of all the holo structures.  

Based on the greatest motions, the best global conformations are PC3 

of the Apo protein, PC1 of Helicase-Triphenylmethane complex, PC2 

of Helicase-GA12 complex, PC3 of the Helicase-GA20 complex, and 

PC3 of the Helicase-GA51 complex. Similarly, the best conformations 

that produced the greatest motions at Pocket 26 are PC3, PC3, PC1, 

PC1, and PC3 of the Apo protein, Helicase-Triphenylmethane, 

Helicase-GA12, Helicase-GA20, and Helicase-GA51 complexes 

respectively (Table 6). 

The cosine contents of the principal components reveal the 

convergence of the MD simulation. Monitoring convergence is 

essential for sampling quality as results should be accurate and 

reproducible. Table 6 shows good quality cosine content data except a 

slight non-convergence at the PC3 of the Helicase- Triphenylmethane 

complex.
70

 

Put together, while all lead compounds induced greater motions of the 

SARS-CoV-2 Helicase than the standard, GA51 induced the greatest 

motions. This implies that GA51 would induce the greatest structural 

distortion of the viral protein at global and regional (Pocket 26) levels. 

 

Table 3: Molecular docking scores of ligands against SARS-

CoV-2 Helicase
Ligand Binding (Kcal/mol) affinity 

Triphenylmethane -7.4 

Gibberellin A12 -8.0 

Gibberellin A20 -8.4 

Gibberellin A51 -8.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Ramachandran plot for SARS-CoV-2 Helicase 

(QHD43415_12.pdb). 
 

 

 

Table 4: Hydrogen bond analysis  

Figure 1: (A) Cartoon model of the crystal structure of SARS-

CoV-2 Helicase (QHD43415_12.pdb). Beta sheets (magentas), 

Alpha helix (cyan) and Loops (pink). (B) Surface 

representations 
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A B C D 

Complex Number of bonds Residues Distance (H-A) Distance (D-A) Bond angle 

Hel- Triphenylmethane 0     

Hel-GA12 3 LEU235 3.22 4.01 134.88 

  LEU235 2.24 3.09 145.5 

  LEU235 2.76 3.16 105.78 

Hel-GA20 2 PHE24 2.22 3.18 159.23 

  PHE133 2.64 3.03 102.66 

Hel-GA51 2 PHE24 2.09 3.06 159.85 

  PHE133 2.83 3.31 109.57 

 

Table 5: Other Protein-ligand interactions 

 Hydrophobic Int. Salt bridge Residue p-Stacking Residue 

Complex Residue Distance   Distance Residue Distance 

Hel-Triphenylmethane VAL6 3.45   PHE24 4.86 

 PRO23 3.90     

 PHE24 3.98     

 PHE133 3.63     

Hel-GA12 ARG129 3.60     

 PRO234 3.60     

Hel-GA20 PRO23 3.50     

 ARG129 3.86     

 PRO234 3.94     

Hel-GA51 PRO23 3.67     

 ARG129 3.99     

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic cross correlation map (DCCM) 

DCCM is a widely accepted tool used to analyze trajectories of 

molecular dynamics simulation. It is used to calculate the time-

correlation atomic motions of a system as it reveals the heat map of 

the cross correlation of residual fluctuations.
71,72

 

Figure 11 and Table 6, shows heat maps depicting a complex pattern 

of correlated, non-correlated, and anti-correlated motions in Apo and 

Holo structures. 

Comparative results reveal that atomic motions in the Helicase- GA51 

complex showed the most intense anti-correlated motions in the holo 

structures. The Helicase-Triphenylmethane complex has 

predominantly non-correlated motions in residues 1-300. On the 

contrary, the Helicase-GA51 complex has predominantly correlated 

motions between residues 1-100 and non-correlated motions between  

residues 100-300. While the heat map of the Helicase-GA12 complex 

closely resembles that of the Helicase-Triphenylmethane, that of the 

 

 

 

 

 

 

 

 

 

 

Helicase-GA20 complex is less intense than that of the Helicase-

GA51 complex with respect to anti-correlation motions. Put together, 

the standard and all the lead compounds induced anti-correlation 

motions on SARS-CoV-2 Helicase. GA51 induced the greatest anti-

correlation motions.  

Found abundantly in Pisum sativum (green peas) and Abelmoschus 

esculentus (okra), Gibberellins (GAs) are plant hormones that regulate 

its various physiological processes.
73,74

 Notably in cucumbers, the 

Mosaic virus infection is associated with a reduced concentration of 

endogenous gibberellins which culminates in stunted roots and 

reduced leaf and stem growth.
75

 In this study, GA29 and GA20 are 

predicted to be good drug candidates and also have a modulatory 

effect on the killer cell immunoglobulin-like receptor 2DS2 of Natural  

Killer Cells.
76

 Similarly, GAs have been implicated as modulators of 

plant innate immunity.
77 

 

Table 6: Summary of data from Molecular Dynamics Simulations of Apo and Holo Structures 

Figure 3: The 3D chemical structures (stick model) of standard and lead compound. (A) Triphenylmethane, (B) GA12, (C) GA20 and 

(D) GA51 
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MDS Parameters  Helicase Helicase-Triphenylmethane Helicase-GA12 Helicase-GA20 Helicase-GA51 

RMSD      

Total RMSD 41.05 42.84 36.06 44.06 51.06 

Average RMSD 1.95 2.04 1.72 2.10 2.46 

Lowest RMSD 0.00 0.00 0.00 0.00 0.00 

Highest RMSD 2.42 2.87 2.25 2.61 3.32 

Time Frame of Highest RMSD 1 1 1 1 1 

Time Frame of Lowest RMSD 9 21 21 21 15 

      

RMSD Peak Distribution      

0.00 - 0.49A 1 1 1 1 1 

0.50 – 0.99A 0 0 0 0 0 

1.00 – 1.49A 1 0 2 1 0 

1.50 – 1.99A 5 6 13 1 3 

2.00 – 2.49A 14 12 5 16 6 

2.50 – 2.99A 0 2 0 2 6 

3.00 – 3.49A 0 0 0 0 5 

      

RMSF      

Total Global RMSF 598.93 639.76 610.30 622.78 724.06 

Average Global RMSF 1.00 1.06 1.02 1.04 1.20 

Total Regional (Pocket 26) RMSF 8.33 8.20 7.21 8.25 8.57 

Average Regional (Pocket 26) RMSF 0.76 0.75 0.66 0.75 0.78 

Least Fluctuation 0.45 0.44 0.45 0.40 0.39 

Highest Fluctuation 3.48 3.52 2.83 4.06 4.37 

Range of RMSF 3.03 3.08 2.38 3.66 3.98 

      

PCA      

Total global motions (mean of PC1, PC2 & 

PC3) 

20.57 19.20 20.30 20.7 20.9 

Average global motions (mean of PC1, 

PC2 & PC3) 

0.03 0.03 0.03 0.03 0.03 

Total Regional (Pocket 26) Motion (mean 

of PC1, PC2 & PC3) 

0.27 0.23 0.24 0.24 0.25 

Average Regional (Pocket 26) Motion 

(mean of PC1, PC2 & PC3) 

0.02 0.02 0.02 0.02 0.02 

Best global Conformation PC3 PC1 PC2 PC3 PC3 

Best regional Conformation (Pocket 26) PC3 PC3 PC1 PC1 PC3 

PC1 Eigenvalue 19.90% 30.70% 31.70% 30.70% 50.20% 

PC2 Eigenvalue 15.70% 0.16% 14.50% 20.50% 10.50% 

PC3 Eigenvalue 13.30% 0.13% 9.20% 9.30% 8.50% 

Total 48.90% 59.80% 55.40% 60.50% 69.20% 

PC1 cosine content 0.87 0.86 0.82 0.87 0.87 

PC2 cosine content 0.23 0.32 0.71 0.76 0.87 

PC3 cosine content 0.13 0.34 0.70 0.53 0.68 
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Figure 4: Binding site of SARS-CoV-2 Helicase interacting with standard and lead compounds. (A) Helicase-Triphenylmethane 

complex, (B) Helicase-GA12 complex, (C) Helicase-GA20 complex and (D) Helicase-GA51 complex 

 

Figure 5: Protein-Ligand interactions of SARS-CoV-2 Helicase with standard and lead compound. (A) Helicase-Triphenylmethane 

complex, (B) Helicase-GA12 complex, (C) Helicase-GA20 complex and (D) Helicase-GA51 complex 

 

Figure 6: Cartoon model of the crystal structure of SARS-CoV-2 Helicase Apo and Holo structures (without water and ions) after 

molecular dynamics simulation. Beta sheets (magenta), Alpha helix (cyan) and Loops (pink). (A) Helicase, (B) Helicase-

Triphenylmethane complex, (C) Helicase-GA12 complex, (D) Helicase-GA20 complex and (E) Helicase-GA51 complex 
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A B C 

E D 

Figure 8: RMSD histogram for Apo and Holo structures. (A) Helicase, (B) Helicase-Triphenylmethane complex, (C) Helicase-GA12 

complex, (D) Helicase-GA20 complex and (E) Helicase-GA51 complex 

Figure 7:  RMSD for Apo and Holo structures. (A) Helicase, (B) Helicase-Triphenylmethane complex, (C) Helicase-GA12 complex, (D) 

Helicase-GA20 complex and (E) Helicase-GA51 complex. 
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Figure 9:  Per-residue RMSF for Apo and Holo structures. (A) Helicase, (B) Helicase-Triphenylmethane complex, (C) Helicase-GA12 

complex, (D) Helicase-GA20 complex and (E) Helicase-GA51 complex 

 

Figure 10: Dynamic cross correlation map Apo and Holo structures of SARS-CoV-2 Helicase. 

Purple represents anti-correlated, dark cyan represents fully correlated while white and cyan represents moderately and uncorrelated 

respectively. 1.0 = correlated; 0 is non-correlated; and 1 is anti-correlated. (A) Helicase, (B) Helicase-Triphenylmethane complex, (C) 

Helicase-GA12 complex, (D) Helicase-GA20 complex and (E) Helicase-GA51 complex 

 

A B C 

D 
E 

E B C 

D E



                                              Trop J Nat Prod Res, January 2021; 5(1):165-177                         ISSN 2616-0684 (Print) 

                                                                                                                                                               ISSN 2616-0692 (Electronic)  
 

175 
© 2021 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License 

 

Figure 11: Principle component analysis cluster plot of Apo and Holo structures 

The projection of trajectory onto 1st three eigenvectors for: (A) Helicase, (B) Helicase-Triphenylmethane complex, (C) Helicase-GA12 

complex, (D) Helicase-GA20 complex and (E) Helicase-GA51 complex 

 

 

Conclusion 

Though Triphenylmethane has been proven to be a viral Helicase 

inhibitor, it is a poor drug candidate. GA51 is predicted to have the 

highest enzyme inhibiting activity and also the strongest binding 

affinity (-8.6 Kcal/mol) for SARS-CoV-2 Helicase. The other lead 

compounds showed a greater binding affinity than the standard which 

had no hydrogen bond with the target protein. Studying the time-

resolved motions of Apo and Holo macromolecules, GA51 and GA20 

are predicted to have better pharmacodynamics than the standard. The 

standard proved to be better than GA12. 

Specifically, as a viral protein inhibitor, GA51 and GA20 show greater 

structural distortion to the SARS-CoV-2 Helicase as seen in the 

RMSD values, distribution of RMSD peaks, RMSF, and PCA (global 

and local motions) than the standard. Overall, GA51 has been 

predicted to show the greatest SARS-CoV-2 Helicase inhibitory 

activity as further confirmed by the DCCM map. It is recommended 

that further investigation be carried out to evaluate the inhibitory 

activity of GA51 and GA20 against SARS-CoV-2 Helicase using in 

vivo and in vitro experiments. 
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