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Introduction 

Cancers are a group of diseases characterized by erratic cell 

growth which invade and spread into other parts of the body.
1,2

 They 

are caused by DNA damage and an ineffective DNA repair 

mechanism. According to a 2015 WHO report, cancer is the second 

leading cause of death globally and there were 90.5 million incidences 

of cancer in 2015 which accounted for 8.8 million deaths.
3
  

Cancers are caused by a persistent damage to DNA which culminates 

into mutations of certain gene sequences in the human genome.
4
 

Expression of these mutant sequences lead to an autonomous and 

unregulated hyper-proliferation of cells; insufficient apoptosis; altered 

differentiation and metabolism; genomic instability; and 

immortalization.
5
 The abnormal proliferation of cells is due to 

alterations in the cell cycle replication mechanism due to nuclear and 

cytoplasm distortions. These changes include hyperchromatism, 

increased telomerase expression, prominent nucleoli, irregular 

chromatin distribution within nuclei, and increased size of nucleus, 

pleomorphism, and chromosomal translocations.
6,7

 

Available cancer therapies such as chemotherapy are non-selective as 

other normal rapidly dividing cells (including immune cells) are 

destroyed. Another major frustration faced by clinicians and 

researchers includes the evasive nature of cancer cells as they beat the 
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immune system by their molecular ‗anonymity‘. This is further 

complicated by their rapid multiplication, invasiveness, and malignant 

abilities. Through intricate mechanisms, the rapidly dividing aberrant 

cells are able to evade the immune system, invade the surrounding 

tissue, enter into the lymph nodes, and metastasize.
8
 Therefore, the 

development of potential therapeutic agents must consider selectivity, 

specificity, and efficacy. 

NK cells are responsible for immune-surveillance of tumor and 

virally-infected cells. To unlock or lock the cytotoxic potentials of this 

unique population of immune cells are activating and inhibiting 

receptors respectively.
9
 The immunomodulatory potential of NK cells 

guarantees that the immune system does not fight against itself. 

Therefore, NK cell-targeted therapies hold great promise in the 

treatment of cancers.
9 

 

Materials and Methods 

Materials 

The protein and ligand databases used were: Protein Databank, 

Uniprot, and PubChem. The webservers used were: pkCSM, Clustal 

Omega, ExPASy, Molinspiration, Protein-Ligand Interaction Profiler 

(PLIP), SWISS-MODEL, SwissADME, ChemMine, MolProbity, 

Chiron, and CABS-flex 2.0. The software used are: Discovery studio 

2017, Open Babel, PyMOL, and Python prescription (PyRx) 0.8. 

Identification of targets 

The activating receptors of NK cells were identified by an extensive 

literature review. Validation of these molecular targets was also by 

empirical evidence provided by relevant research publications. The 3D 

crystallographic structures of these proteins were downloaded from 

the RCSB protein databank in the pdb format and visualized using the 

PyMOL software.
10

 The homology modeling of the proteins whose 
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structures could not be obtained in the RCSB protein databank was 

executed using the SWISS-MODEL web-server.
11

 The templates of 

closely related proteins were used for the modeling as seen in Table 1.  

Analysis and validation of protein structures 

An all-atom structural validation and dihedral-angle diagnostics of the 

protein crystallography was conducted using the online server, 

MolProbity and the Ramanchandran plots were also obtained as seen 

in Table 2.
12

 

Preparation of protein targets for docking 

In preparing the protein targets for molecular docking, all available 

water molecules, native ligands, and unwanted chains were removed 

using the PyMOL software.
10

 Energy minimization of the protein 

targets to resolve steric clashes was done using the online tool, Chiron 

as seen in Table 3.
13

 The PyRx software was used to convert the 

protein targets from pdb to pdbqt files.
14

 

Building of library of natural bioactive compounds 

A library of 1,697 compounds was built from an extensive data mining 

from the literature review of 79 plants (See supplementary data) 

predominantly found in Nigeria and tropical Africa. The 3D structures 

of these natural compounds were downloaded from the PubChem 

chemical database in their Spatial Data File (SDF) formats.
15

 The 

properties of these compounds such as molecular weight, canonical 

SMILES, number of heavy atoms, hydrogen bond donors, hydrogen 

bond acceptors, Log P, and topological polar surface area were 

obtained from PubChem.
15

  

Preparation for docking 

Prior to docking, 1,697 natural compounds were screened for 

bioavailability using the Lipinski and Veber rules. As stated by 

Lipinski, the drug-like properties include a MW ≤ 500, Hydrogen 

Bond Donor ≤ 5, Hydrogen Bond Acceptor ≤ 10, and a Log P value ≤ 

5. Further screening was done for cellular permeability using the 

Veber‘s rule. Only compounds of Topological Polar Surface Area 

(TPSA) values of ≤ 140 Å and number of rotatable bonds ≤ 10 were 

successful.  

The docking protocol was validated by using a structure from the 

Protein Data Bank. The molecule which is the Adhesion Domain of 

Human CD2 (PDB ID: 1GYA) was downloaded in pdb format and 

separated from N-Glycan which is the native ligand. The separated 

molecules were docked together using PyRx 0.8. The docked result 

was superimposed on the pure protein structure and compared with the 

original 1GYA structure found in the data bank (Figure 2). 

Ligands were uploaded unto PyRx 0.8 through the Open Babel plug-in 

tool. For stable conformation, the conjugate gradient descent was used 

as optimization algorithm. The Universal Force Field (UFF) was used 

as the energy minimization parameter. 

The SDF formats of all ligands were converted to the pdbqt format in 

readiness for docking. The grids were maximized to cover the entire 

binding site of the ligand. Molecular docking of ligands against 

protein targets was executed through AutoDock Vina plug-in tool of 

the PyRx software. Based on the scoring function, the best fits were 

obtained and saved in excel files.  

 

Screening for potency 

The first stage of the screening was for drug potency. Molecular 

docking was used as the first step in the virtual screening process, and 

the docking scores were used as empirical predictors of the strength of 

the intermolecular interactions between the receptors, and the ligands 

(See supplementary data). 

A uniform docking scoring cut-off of -7.0 kcal/mol was used to serve 

as a general border line for the binding energies obtained between the 

receptors, and the ligands.  Because drug potency is an aggregate of 

the binding affinity and efficacy, further screening for efficacy was 

executed by imploring the use of three Ligand Efficiency Metrics 

(LEM) which are the Ligand Efficiency (LE), ligand-efficiency-

dependent lipophilicity, (LELP) and Ligand-lipophilicity efficiency 

(LLE). The LE was calculated as the binding energy divided by the 

number of heavy atoms; the LELP is the Log P value of the ligand 

divided by the LE; and the LLE is the binding energy minus the log P.  

The cut-offs are ≥ 0.3 for LE; -10 to 10 for LELP; and   ≥ 5.0 for LLE 

(See supplementary data for results). 

 

Further screening for Oral Bioavailability, Promiscuity and 

pharmacokinetic properties 

After the initial screening for drug-likeness using the Lipinski and 

Veber rules, the natural compounds were screened for saturation and 

promiscuity using the SwissADME webserver.
16

 Using the canonical 

SMILES, a Quantitative-Structural Activity Relationship (QSAR) 

based prediction of the Absorption, Distribution, Metabolism, 

Excretion, and Toxicity (ADMET) properties of the selected 

compounds was executed using the pkCSM webserver and this was 

used for further screening. (See supplementary data for results). 

Prediction of bioactivity 

Using the Molinspiration webserver, the bioactivity of the compounds 

was predicted as seen in Table 10. 

Specificity/promiscuity analyses 

After the initial screenings, the comparative binding affinity analysis 

of all the protein-ligand interactions was done to check for specific 

and promiscuous binding (Table 11).   

Structural similarity analyses 

The similarity analyses of all the screened ligands were done using the 

ChemMine webserver as shown in Table 12.
17

 A structural analysis of 

the protein targets was done through a pairwise Percent Identity 

Matrix. The results are seen in Table 13. A multiple sequence 

alignment of the amino acid residues of the extracellular domain of all 

the receptor targets and subsequently the phylogenetic analysis was 

done using the Clustal Omega webserver.
18

 The results are shown in 

Figure 1. 

Binding site analyses 

The poses of the selected ligands as they interact with the receptors 

during docking were saved on PyRx and viewed on PyMOL. The 

protein structures were superimposed on PyMOL and saved in the pdb 

format. The structures were uploaded into the Protein-Ligand 

Interaction Profiler (PLIP) webserver for the analysis of their binding 

sites.
19 

The summary of all the protein-ligand interactions is shown in 

supplementary data. 

Normal Mode Analysis 

The Root Mean Square Fluctuation (RMSF) plots of the amino acid 

residues of native and mutant (after binding with ligand) proteins were 

obtained using the CABS-flex 2.0 webserver (Table 14).
20

 

 

Results and Discussion 

Preparation for docking   

Profiling and homology modeling of the protein structures: From 

Table 1, the four proteins modeled have very high percentage 

(between 85.96 and 92.44%) similarity with their templates. Usually, 

protein structures with over 30% identity to their templates can be 

predicted with an accuracy equivalent to a low-resolution X-ray 

structure. 
21

 In such high sequence identities, the major errors in 

modeling arise from the use of a poor template and inaccurate 

alignment of target-template sequence.
22

  

 

Ramachandran Analysis 

The Ramachandran plot was used to validate the   macromolecular 

crystal structures of all the receptor targets to be studied by revealing 

the torsional conformation of their amino acids. From Table 2, all the 

protein structures have over 80% and 90% of their residues within the 

favoured and allowed regions respectively signifying good 

stereochemical quality. None of the proteins are intrinsically-
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disordered because of the chemical correctness of the torsional angles 

of their backbone.
23

 

When the φ and ψ angles are combined, an outlier residue has unusual 

torsional angles. All the protein structures had ramachandran outliers 

less than 0.05% signifying quality backbone conformation.
24

 In this 

regard, the two proteins of least structural quality are KIR2DS1 and 

KIR2DS3 with 9 (0.046%) and 7 (0.036%) outliers respectively. 

These two proteins were homologically modeled from the same 

template, KIR3DL1. The relatively higher percentage of outliers found 

in these two proteins may be due to partially disordered large loops in 

the template. Loops have high electronic densities due to their 

structural flexibility and randomness and hence their residues show a 

broader range of dihedral angle values.
25

 

Though from Table 2, all the 18 proteins meet the required cut-off, 

IL15Rα and CD2 have the highest and lowest structural quality 

respectively. This difference is due to the method used for the 

structural analysis of these proteins. The structure of IL15Rα (PDB 

4gs7) was obtained from x-ray crystallography, while CD2 

(PDB1gya) was obtained from solution nuclear magnetic resonance 

(NMR). NMR gives a lesser resolving power than X-ray 

crystallography because it offers much more complex information 

from the same material. Most successful computational protein design 

use high‐resolution X-ray crystallographic structures as templates.
26

 

 

Energy minimization 

As two non-bonding atoms in a protein structure approach, an atomic 

overlap (contact) occurs resulting in Van der Waals repulsion energy 

greater than 0.3 kcal/mol and subsequently leading to a steric clash. 

The webserver, Chiron is able to resolve severe steric clashes with 

minimal perturbation of the backbone of the native structure (less than 

1 Å Cα RMSD).  

Chiron generates a clash score which is a size-independent parameter 

obtained mathematically by the ratio of total VDW repulsion energy to 

the total number of contacts. From data generated from high-

resolution structures, Chiron is able to determine if a protein has 

artifacts (excessive steric clashes) and return the clash score to 

physiological acceptability (0.02 kcal.mol−1.contact−1).
13

 

A reduction in the total van der Waals (VDW) repulsion energy 

(Kcal/mol) of the clashing atoms would lead to a reduction in the 

steric clashes and consequently improve ligand-binding This is done 

computationally by rearranging this collection of non-bonding atoms 

in such a way that their inter-atomic forces are as close to zero as 

possible.
13

  

From Table 3, all 17 minimized structures have a physiologically 

acceptable clash ratio (clash score) of less than 0.02. There is no 

reduction in the total number of clashes and total VDW repulsion 

energy (Kcal/mol) in NCR1 and IL2Rγc signifying that these proteins 

already stable conformations.  There is also no reduction in the steric 

clashes in all the protein structures that were modeled which are 

KIR2DS1, KIR2DS3, KIR2DS5, and NKG2E. This is because the 

SWISSMODEL webserver during the modeling process repairs 

distorted geometries or steric clashes through energy minimization. 
27

 

IL2Rβ was not minimized probably due to missing heavy atoms of the 

backbone.
13 

 

Validation of docking protocol 

1gya consists of CD2 and N-glycan (alpha-d-mannose, beta-d-

mannose, and N-acetyl-d-glucosamine) molecules. Figure 2 shows the 

images of the original 1gya and that of the separated, docked, and 

superimposed. These two closely resemble thereby validating the 

docking protocol. 
28 

 

Screening for Bioavailability 

Prior to docking, a library of 1,697 compounds was screened for 

bioavailability using the Lipinski and Veber rules. The predictors of 

good oral bioavailability include number of rotatable bonds, hydrogen 

bond acceptors (≤ 10), hydrogen bond donors (≤ 5), molecular weight 

(≤ 500), low polar surface area (TPSA ≤ 140), and lipophilicity (Log P 

≤ 5.0).
29,30

 1,048 front-runner compounds were selected with zero 

violations to both rules. 

One limitation of the Lipinski rule is the fact that it only applies to 

compounds that are transported by diffusion through cell membranes. 

Actively transported compounds are exempted from this rule.
31

 The 

conformational features of these compounds closely resemble 

endogenous metabolites and as such active transport is enhanced 

through ATP-dependent mechanisms.
32

 This explains why so many 

proven compounds that have elicited in vitro cytotoxicity have been 

screened out.
33

  

 

Screening for potency 

Binding Affinities: For the purpose of screening, a uniform docking 

score of -7.0 kcal/mol   was chosen as a cut-off value as this depicts 

strong protein-ligand binding. The choice of a lower docking score 

would increase the amount of data to be handled and also affect 

potency. 
34

 The binding affinity values reveal the strength of ligand-

protein interaction.  After docking 1,048 ligands against 18 receptors, 

377 front-runner compounds were selected as seen in Table 5 

(summary of screening results). This implies that approximately 36% 

of the screened compounds obtained mainly from fruits, and 

vegetables have strong binding affinities with the activating receptors 

of the NK cells. This data further establishes the fact that 

phytochemicals of fruits, mushrooms, and vegetables modulate NK 

cell activities and thereby promote the prevention of cancer.
9
 

Table 6 shows the summary of distributions and frequencies of 

receptor-ligand dockings at frequencies ≤-7.0 kcal/mol. NKG2D, 

NKG2E, and PILR bound with the highest number of ligands in the 

library. NKG2D is known to be a promiscuous receptor and this 

suggests why it binds to a high number of ligands in the study. 
35

 

NKG2E which was modeled with a NKG2A template (85.96% 

similarity) and NKG2D have similar hydrophobicity plots suggesting 

the possibility of promiscuity. PILR is also known to be a 

promiscuous type I transmembrane receptor and this suggests why it 

binds to a high number of ligands in the study.
36

 

On the contrary, Table 6 also reveals that NCR2, CD2, NKG2C, 

IL2Rβ, and IL15Rα have less than 5%. This is suggestive of the 

fidelity of these receptors as they specifically bind to only a few 

ligands.
37

  

Ligand Efficiency Metrics: LEM screening identifies compounds with 

greater potency and ADMET properties. 
38

 Maintaining the potency of 

a compound with the right molecular size and lipophilicity is a 

challenge in multi-parameter lead optimization. It is more ideal to 

optimize hits with the highest ligand efficiencies than those with the 

strongest binding affinities.
39

 Table 5 reveals that a total of 192 front-

runner compounds were obtained after screening using the LEM. The 

screened compounds had a LE of ≥0.3; an LELP of between -10 and 

10; and LLE ≥ 5.0.39 Good LE values indicate that compounds have 

the desired potency at the appropriate weight. With lower molecular 

weight, there is also room for lead optimization to improve the 

potency and pharmacokinetic properties.
40

 

 

QSAR-Based ADMET, Saturation and Promiscuity predictions 

As seen in Table 5, a total of 69 front runner compounds emerged 

from the screening for saturation, promiscuity, and pharmacokinetic 

properties. Many of the eliminated compounds remain viable 

candidates for lead optimization. Many of the eliminated compounds 

are also known to have strong antioxidant and immunomodulatory 

properties. 

Molecular complexity which is measured by the carbon bond 

saturation (fraction of spᶾ carbons - fspᶾ) plays a vital role drug 

discovery. Saturation directly correlates with solubility and saturated 

hydrocarbons have stability of the chemical bonds which make them 

unreactive. 
41

 As seen in Table 8, all compounds with values less than 

0.25 are unsaturated and therefore eliminated. 

While drug promiscuity may have its advantage, it elicits undesirable 

side effects due to ligand interactions with multiple protein targets in 

the biological system. A good predictor of promiscuity in bioassays is 

aggregation. Most drugs are not promiscuous even at a high 

concentration. However, some have tendency to self-aggregate in 

aqueous media. These compounds have disruptive functional groups 

that can interfere with bioassays by causing activity artifacts leading to 
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false positive results. 
42

 As seen in Table 8, there are no PAIN (Pan-

assay Interference) compounds.  

The absorption profile of a drug affects its bioavailability and 

consequently its efficacy and pharmacological effect.
43

 Parameters 

such as water solubility, Caco-2 cell permeability, Human Intestinal 

Absorption (HIA), and Skin Permeability are within accepted range.
44-

47
 Permeability glycoprotein (P-glycoprotein or Pgp) is a transporter 

protein that is located on the cell membrane. It is an ATP-dependent 

efflux pump which flushes out xenobiotics and toxic substances 

thereby limiting their cellular absorption.
48

 From Table 7, all Pgp 

inhibitors were eliminated to avoid cellular toxicity. However, Pgp 

inhibitors can be used in overcoming multidrug resistance in cancers 

or administered with P-gp substrates to overcome the challenges of 

poor bioavailability associated with the later.
48

 

The distribution of a drug determines the pharmacological effect and 

duration of action. From Table 7, the predicted distribution parameters 

such as steady state volume of distribution (VDss), Fraction unbound 

(Fu), Blood Brain Barrier (BBB) permeability and CNS permeability 

are within pharmacological range.
49

 

Many drugs that affect CYP450 enzymes by either inducing or 

inhibiting their activities. CY3A4 is the most abundant isoform in the 

liver. Inhibiting this enzyme can block it and cause an elevation of 

levels of substrate leading to toxicity or undesirable pharmacological 

effects.
50,51

 From Table 8, all CYP450 enzyme inhibitors were 

eliminated. 

The rate at which a drug is excreted determines the dose. Drug 

excretion is determined by such parameters as total clearance (CL) 

which is a total of the renal clearance, hepatic clearance, and the lung 

clearance. From Table 8, all lead compounds have CL values within 

accepted pharmacological range. Human Organic Cation Transporter 

(OCT2) is a renal uptake transporter protein located on the proximal 

tubule cells.  It removes mostly OCT2 substrates which are mostly 

cationic drugs from the blood into the urine. The concurrent 

administration of an OCT2 substrate with an OCT2 inhibitor would 

lead to a toxic intracellular accumulation of the OCT2 substrate.
52

 

From Table 8, there is no OCT2 substrate. 

The toxicity profile of a drug is predicted based on QSAR models 

such as microbial and fish toxicity, mutagenicity to Salmonella 

typhimurium (Ames Test), Human ether-a-go-go-related gene (hERG) 

inhibition, skin Sensitization, and hepatotoxicity. All lead compounds 

were non-mutagens, non-hERG inhibitors and non-dermatoxic. From 

Table 9, Eugenyl Glucoside, Gibberellin A19, Gibberellin A51, and 

Gibberellin A53 are predicted to be hepatotoxic. This implies that they 

possess structural moieties that could elicit the disruption of normal 

liver function. This kind of hepatotoxicity usually has a predictable 

dose-response curve. This suggests that doses below the Maximum 

Tolerated Dose (MTD) cannot induce hepatotoxicity.
53

 Other dose-

related toxicity indicators which include microbial and fish toxicity, 

MTD, acute toxicity (LD50), and chronic toxicity are within 

acceptable pharmacological range.
 52

 

 

Bioactivity 

Affinity does not necessarily predict activity. Binding ligands could be 

either agonists or competitive inhibitors. Based on a particular drug 

target, a compound is considered as active when it‘s a bioactivity 

score is more than 0.0; moderately active when score is between −5.0 

and 0.0; and inactive when the score is less than −5.0.
54

  

Table 10 reveals 17 compounds that are active as nuclear receptor 

ligands. Many of these compounds are multi-targeted, binding to 

multiple receptor targets.  Bioactivity screening also eliminates 

promiscuous binding compounds as seen in PILR, NKG2E, and 

NKG2D receptors. 

  

Specificity-Promiscuity Analyses 

There is no correlation between potency and specificity. Selectivity 

plays a strategic role in drug development. 
55

 Beyond potency, the 

selectivity of a drug is also important as this guarantees specificity at 

the biological target reducing unwanted side effects. 
56

  

From Table 11, the comparative analysis of binding affinities shows 6 

compounds that have absolute binding specificity with a single 

receptor (NKG2D or NKG2E) at ≤ -7.0 kcal/mol. Specificity also 

depicts the strength of interaction between ligand and protein. High 

chemical specificity means that proteins bind to a limited number of 

ligands. This is important as certain physiological processes might 

require specificity.
56,57

 Compounds such as 4'-Methyl-

epigallocatechin, Andrographis Extract, and Gibberellins A17, 19, 29, 

& 44 have strong binding affinities with 15 and above receptor protein 

targets.  

 

Similarity analysis 

Structural similarity may suggest closeness in biological activity.
58

 

Ligand Similarity analyses: As seen in Table 12, a pairwise ligand 

similarity analyses of Gibberellins A17, A19, A20, A29, A44, A51, 

and A53 reveal Tanimoto scores ranging from 0.50 to 0.81. 

Gibberellins A20 and A51 have the same chemical formula but 

different stereochemistry. Carveol & cis-Carvotanacetol have a 

Tanimoto score of 0.51. These compounds have been predicted to 

elicit similar function and would be useful in building 

pharmacophores for ligand-based drug design.
59

 

 

Receptor similarity:  The multi-target binding of the ligands is likely 

due to the structural similarities of the protein targets. Empirical 

evidence show that ligands could have the same binding pocket in 

different proteins.
55

 This may be due to genetic similarities of the 

proteins. Isoforms of the same protein and those that by co-evolution 

may exhibit similar biochemical reactions might have the same 

binding sites.
60

 

The structural similarity of the target protein was studied using a 

percent identity matrix in Table 13. Amino acid sequence alignments 

that produce a pairwise sequence identity >40% is considered high.
61

 

Out of the 11 members of the Immunoglobulin super family of 

receptors, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, and KIR2DS5 

are highly similar proteins as they have degree of conservation ranging 

from 86.53-92.65% (Table 13). Of all the 3 lectin-like receptors, 

consensus sequences only exist between NKG2E & NKG2C with a 

90.04% identity. This signifies that these two sets of proteins are 

isoforms. NKG2E and CD2 have the least identity of 6.36%. 

From Figure 1, all the receptors have a common ancestor and have 

evolutionary relatedness. An original speciation event occurred 

resulting in three lineages (roots). The tree also depicts the direction of 

evolution, with the flow of genetic information moving from the roots, 

through the clades, to the branches, to the taxa, and outgroups. Root 3 

consists exclusively of the KIR2DS series of receptors. Root 1 Clade 2 

also consists of all the lectin-like receptors. Most closely related pairs 

exist in the sister taxa. KIR2DS1-5 are the most closely related family 

in all the 18 receptors. The NCR 1-3 are the most divergent. 

 

 

 
Figure 1: The phylogenetic relationship of the 18 activating NK cell 

receptors 

 
Binding site analyses 

All residues that are involved in the ligand–protein interactions are 

located within the extracellular domains of the receptor (See 

supplementary data). Receptor signaling should commence from the 

extracellular domain through the helical domain to the cytoplasmic 
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domain. The greater the number of ligand interactions within the 

functional domains, the greater the biological activity of the protein is 

triggered. The 18 receptor targets have functional domains such as 

Immunoglobulin-like (C and V types), sushi, C- type lectin, and 

fibronectin type III domains. For example, as seen in supplementary 

data, Gibberellin A53, 4'-Methyl-epigallocatechin, and Gibberellin 

A51 have all their interactions (hydrophobic and hydrogen bonds) 

within the C2 type 1 and C2 type 2 domains of the KIR2DS4 receptor 

(N.B. A value of 5 should be added to all the residue numbers for 

KIR2DS4 to take care of the rearrangement during energy 

minimization).IL2Rβ has 5 binding sites. Proteins with multiple 

binding sites show cooperativity. The assembly of the IL2R-IL15R 

complex allows interfaces between these proteins to create 

hydrophobic pockets for ligand binding. However, the binding at the 

original site affects the affinity of all the other sites.
62

 

Normal Mode Analysis 

Protein flexibility is determined by fluctuations of the alpha carbon 

atoms of the amino acids. This is seen as rearrangements of side 

chains or changes in the backbone. Ligand binding induces 

conformational changes in the protein structure.
63

 The stability of 

protein-ligand complexes would impact on protein function. As 

revealed in Table 14, structures with the lowest global fluctuation are 

indicative of the most stable protein-ligand complexes. Ligands of 

these most stable complexes are the most suitable drug candidates for 

their respective receptors. The highest numbers of interacting residues 

are seen in NKG2-D, PILR, and NKG2-E which have 32, 26, and 22 

residues respectively. The lowest RMSF value is seen in the 

interaction between IL2Rα and Monocrotalline (0.13), while the 

highest is between KIR2DS2 and Gibberellin A29 (51.13). The 

highest number of bonds is seen between PILR and Eugenyl 

Glucoside (12). 

  

Brief review of successful leads  

Andrographis Extract obtained from Andrographis paniculata (King 

of Bitters) has exhibited potent anti-inflammatory and anticancer 

properties. Its chemo-preventive activity is revealed in the growth 

suppression of cancer cells by inducing apoptosis and by inhibiting 

PI3K/AKT, NF-kappa B, and other kinase pathways.
64

    

In mice, the ethanol extract of Andrographis paniculata also 

significantly induced antibody production and delayed type 

hypersensitivity response to sheep red blood cells. Regarding non-

specific immune response, the Andrographis extract induced 

significant immunostimulation as measured by proliferation of splenic 

lymphocytes, thymocytes, and bone marrow cells; the migration of 

macrophages; and phagocytic activity.
65 

Andrographis paniculata extract is known to be one of the natural 

products that enhance the efficiency of NK cells in the control of 

cancer. It promotes NK cell mediated lysis of metastatic tumor cells in 

mice through an antibody-dependent complement-mediated 

cytotoxicity.
66

 It also significantly increases the production of 

interleukin-2 and interferon-gamma and decreases pro-inflammatory 

cytokines such as TNF-α, GM-CSF, IL-1ß, and IL-6 in tumour-

bearing animals.
67

 

The Gibberellins A17, A19, A20, A29, A44, A51 & A53: Gibberellins 

(GAs) are a group of closely related plant hormones that regulate 

several physiological and developmental processes which include 

germination, elongation, flowering, and fruiting.
68

 Gibberellins can be 

obtained from Abelmoschus esculentus (Okra) and Pisum sativum 

(Green peas).
69,70

 

Gibberellin has been implicated as a modulator of the plant innate 

immunity. It plays significant role in plant-microbe interaction, 

especially as it has to do with the root‘s basal defense. Successful 

fungal colonization is due to altering gibberellin signaling in plants.
71

 

Gibberellin modulates plant immune system by regulating the 

Salicylic acid (SA), Jasmonic acid (JA), and Ethylene (ET) signaling 

systems.
72

 

There were no direct cytotoxic effects of Gibberellins A17, A19, A20, 

A29, A44, A51, & A53 found in literature. However, Gibberellin 

derivatives such as GA-13315 reveal strong anti-neoplastic effects 

both in vitro and in vivo. It inhibits the growth and also accelerates the 

apoptosis of KB oral cancer cells. GA-13315 also possesses anti-

angiogenic properties.
73,74

 

GA-13315 inhibits the P-glycoprotein thereby reducing multidrug 

resistance induced by cancer cells and it also triggers the multidrug 

resistance-associated Protein-1.
75

 Other synthesized gibberellin 

derivatives bearing two alpha, beta-unsaturated ketone units showed 

strong activity in MTT assay against A549, HepG2, HT29, and 

MKN28 human cancer cell lines. They also exhibited inhibition to 

topoisomerase I activity.
76

 

Gibberellin A4 is known to be a native ligand to the Fab fragment of 

the haptenic mouse monoclonal antibody, 4-B8(8)/E9. X ray 

crystallography of the Fab fragment reveals a typical beta barrel fold 

which is a common motif of all immunoglobulins.
77

 This suggests why 

Gibberellins might be able to bind to Immunoglobulin-like receptors 

which have immunoglobulin domains. 

4'-Methyl-epigallocatechin: This compound can be found in Locust 

beans (Parkia biglobosa). Epigallocatechin which is found in Green 

Tea (Camellia sinensis) can also be methylated into 4'-Methyl-

epigallocatechin found in the human body.
78,79

 

Another epigallocatechin derivative, such as epigallocatechin gallate 

(EGCG) which is also found in Green Tea has anticancer effects. 

Through cell mediated immunity, EGCG reverses myeloid-derived 

suppressor cell activity.
80,81

. ECCG is also able to modulate both the 

innate and adaptive immune systems. In ameliorating experimental 

arthritis in mice, it upregulates the Nrf-2 antioxidant pathway, induces 

Indoleamine-2, 3-dioxygenase (IDO)-producing dendritic cells, and 

increases Treg population.
82

 

Shikimic Acid is a cyclohexanecarboxylic acid, obtained from Apples 

(Malus domestica). It exhibits anti-inflammatory and antioxidant 

activities.
83,84

 Shikimic acid complex of platinum (II) is active against 

Leukemia (L1210 and P388) and B16 Melanoma cell lines.
85

 The 

shikimic acid-based synthesis of zeylenone is widely used as a 

preparation for chemotherapy in cancer patients.
86

 Shikimic acid 

analogue skeleton is a constituent of several antitumor products.
87 

 

 

 

Table 1: Homology modeling of the proteins 

S/N Receptor name Uniprot code Template % Similarity with template 

1. Killer cell immunoglobulin-like receptor 2DS1 Q14954 KIR3DL1 92.44 

2. Killer cell immunoglobulin-like receptor 2DS3 Q14952 KIR3DL1 88.36 

3. Killer cell immunoglobulin-like receptor 2DS5 Q14953 KIR2DL1 91.96 

4. NKG2-E type II Integral membrane protein Q07444 NKG2A 85.96 
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Table 2: Ramanchandran Plot Analysis of Protein Structures  

S/N Receptor  Favoured Region (98%) Allowed Region (>99.8%) No of Outliers (%) Outlier Residues 

1 CD2 81.6% (84/103) 96.1% (99/103) 4 (0.039) 8 GLU (-57.8, 91.6) 

     27 SER (-167.0, -50.7) 

     52 GLU (-177.9, 85.5) 

     72 HIS (61.8, 110.6) 

2 NCR2 94.3 (100/106) 98.1(104/106) 2 (0.019) 59 TRP (-73.2, -140.7) 

     60 THR (97.5, 67.6) 

3 KIR2DS2 95.3% (182/191) 97.9% (187/191) 4 (0.021) 57 ASP (-66.3, 48.6) 

     67 GLY (-29.0, 164.6) 

     68 PRO (-33.4, 118.0) 

     114 PRO (-61.5, -70.2) 

4 NCR1 94.1% (175/186) 98.9% (184/186) 2 (0.011) 100 TYR (60.2, -94.5) 

     150 VAL (69.5, -34.2) 

5 IL2Rα 86.3% (101/117) 96.6% (113/117) 4 (0.034) 22 GLU (-46.7, 99.6) 

     112 ASN (-37.9, -169.8) 

     116 GLU (150.2, -165.2) 

     151 HIS (32.9, 78.8) 

6 NKG2C 82.0% (50/61) 96.7% (59/61) 2 (0.033) 4 VAL (34.2, 31.5) 

     33 LEU (46.3, 87.5) 

7 KIR2DS4 90.2% (174/193) 98.4% (190/193) 3 (0.016) 14 PRO (-64.1, -53.5) 

     52 ILE (-91.4, 46.7) 

     83 VAL (-118.9, -41.0) 

8 NCR3 87.3% (96/110) 100.0% (110/110) 0  

9 IL2Rβ 95.3% (183/192) 100.0% (192/192) 0  

10 γc 94.3% (181/192) 100.0% (192/192) 0  

11 IL15Rα 96.9% (63/65) 100.0% (65/65) 0  

12 PILR 94.1% (222/236) 97.9% (231/236) 5 (0.021) A    2 LEU (-58.8, 30.2) 

     A   36 ASN (15.7, 74.4) 

     A   61 LYS (-25.5, -53.3) 

     B   36 ASN (18.0, 77.2) 

     B   61 LYS (-22.2, -59.2) 

13 NKG2D 93.1% (229/246) 98.4% (242/246) 4 (0.016) A  116 GLU (-45.4, 83.0) 

     B  132 ALA (172.7, 134.5) 

     B  164 GLY (-53.6, 56.7) 

     B  176 PRO (-31.6, -74.6) 

14 CD16 92.7% (140/151) 100.0% (151/151) 0  

15 KIR2DS1 87.3% (172/197) 95.4% (188/197) 9 (0.046) 65 MET (-52.7, -74.3) 

     78 ASP (-22.6, 112.8) 

     88 SER (-48.2, 176.4) 

     89 ARG (-22.7, 102.0) 

     105 THR (-22.4, -53.6) 

     107 SER (179.3, 55.2) 

     135 PRO (-44.3, -50.9) 
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Table 3: Energy Minimization of Protein Structures 
 

S/N Protein Structure Total No. of residues Total No. of contacts Total No. of clashes Total VDW repulsion energy (Kcal/mol) Clash ratio 

1 CD2 Initial 105 1706 131 135.4 0.079 

  Final 105 1326 38 21.44 0.016 

2 NCR2 Initial 108 1539 55 39.48 0.026 

  Final 108 1497 37 26.14 0.017 

3 KIR2DS2 Initial 193 2461 79 56.15 0.023 

  Final 193 2324 56 35.85 0.015 

4 NCR1 Initial 188 2714 84 53.82 0.02 

  Final 188 2714 84 53.82 0.02 

5 IL2Rα Initial 123 1520 65 52.26 0.034 

  Final 123 1378 39 24.39 0.018 

6 NKG2C Initial 63 788 51 54.34 0.07 

  Final 63 701 14 11.35 0.016 

7 KIR2DS4 Initial 195 2637 103 85.66 0.032 

  Final 195 2398 69 42.26 0.018 

8 NCR3 Initial 112 1450 53 38.42 0.026 

  Final 112 1394 41 22.95 0.016 

9 IL2Rβ Initial      

  Final      

10 γc Initial 193 2732 67 39.86 0.015 

  Final 193 2732 67 39.86 0.015 

11 IL15Rα Initial 67 847 25 17 0.02 

  Final 67 843 25 16.22 0.019 

12 PILR Initial 240 3324 101 66.67 0.02 

  Final 240 3402 93 57.85 0.017 

13 NKG2D Initial 250 4424 121 84.66 0.02 

  Final 250 4041 115 71.66 0.018 

14 CD16 Initial 157 2058 97 79 0.038 

  Final 157 2002 54 35.25 0.018 

15 KIR2DS1 Initial 199 2507 65 37.54 0.015 

     163 GLU (-27.7, 101.6) 

     166 ALA (-5.7, -67.1) 

16 KIR2DS3 85.8% (169/197) 96.4% (190/197) 7(0.036) 65 THR (-46.5, -75.6) 

     78 ASP (-21.0, 113.3) 

     89 ARG (-24.8, 104.3) 

     107 SER (173.0, 54.7) 

     135 PRO (-42.6, -53.0) 

     163 GLU (-25.1, 99.9) 

     166 ALA (-3.2, -70.1) 

17 KIR2DS5 92.2% (178/193) 98.4% (190/193) 3 (0.016) 105 THR (86.7, -37.8) 

      

     188 ASP (92.4, -161.9) 

     193 GLY (-56.8, -99.7) 

18 NKG2E 86.7% (98/113) 99.1% (112/113) 1(0.009) 149 ASN (61.8, -81.9) 
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  Final 199 2507 65 37.54 0.015 

16 KIR2DS3 Initial 199 2452 73 39.33 0.016 

  Final 199 2452 73 39.33 0.016 

17 KIR2DS5 Initial 195 2281 55 28.65 0.013 

  Final 195 2281 55 28.65 0.013 

18 NKG2E Initial 115 1459 27 16.99 0.012 

  Final 115 1459 27 16.99 0.012 

 

 

Table 4: Lead compounds‘ compliance with Lipinski & Veber rules 
 

 Pubchem ID MW(g/mol) Log P HBD HBA TPS(A²) No of Rotatable bonds 

4'-Methyl-epigallocatechin 176920 320.29 0.3 5 7 120 2 

Andrographis Extract 6436016 350.4 2.2 3 5 87 3 

Betulalbuside A 14484636 332.39 -0.3 5 7 120 8 

Bisabolone Oxide A 91700388 236.35 2.5 0 2 26.3 1 

Carveol 7438 152.23 2.1 1 1 20.2 1 

cis-Carvotanacetol 12233170 154.25 2.1 1 1 20.2 1 

Eugenyl Glucoside 3084296 326.34 0 4 7 109 6 

Gibberellin A17 5460657 378.4 0.8 4 7 132 3 

Gibberellin A19 5460209 362.4 0.7 3 6 112 3 

Gibberellin A20 5280481 332.4 1.2 2 5 83.8 1 

Gibberellin A29 5460028 348.4 0.2 3 6 104 1 

Gibberellin A44 5460372 346.4 1.6 2 5 83.8 1 

Gibberellin A51 443458 332.4 1.7 2 5 83.8 1 

Gibberellin A53 440914 348.4 2.2 3 5 94.8 2 

Monocrotalline 9415 325.36 -0.7 2 7 96.3 0 

Phellandrenol 76373091 152.23 2 1 1 20.2 2 

Shikimic Acid 8742 174.15 -1.7 4 5 98 1 

 

 

 

 

 

 

 

Table 5: Summary of screening results 
 

Total Library of compounds  1697 

Bioavailability screening 1048 

Docking results cut off 377 

Ligand Efficiency Metrics screening 192 

Promiscuity and Pharmacokinetics screening 69 

Bioactivity screening 17 
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Table 6: Summary of distributions and frequencies of receptor - ligand dockings (≤ -7.0kcal/mol) 
 

S/N Receptor  No. of compounds that exceed cut-off Total No. of docked compounds Percentage  

1 KIR2DS1 75 1048 7.16 

2 KIR2DS2 94 1048 8.97 

3 KIR2DS3 80 1048 7.63 

4 KIR2DS4 84 1048 8.02 

5 KIR2DS5 64 1048 6.11 

6 NCR1 58 1048 5.53 

7 NCR2 13 1048 1.24 

8 NCR3 86 1048 8.21 

9 PILR 151 1048 14.41 

10 CD16A 74 1048 7.06 

11 CD2 25 1048 2.39 

12 NKG2C 20 1048 1.91 

13 NKG2D 235 1048 22.42 

14 NKG2E 161 1048 15.36 

15 IL2Rα 100 1048 9.54 

16 IL2Rβ 36 1048 3.44 

17 γc 55 1048 5.25 

18 IL15Rα 26 1048 2.48 

 

 

Table 7: Absorption and Distribution profile of lead compounds 
 

Ligand H₂0 

Solubility 

Caco2 

perm. 

HIA Skin 

Perm 

P-gp 

sub. 

P-gp I 

Inb. 

P-gp II 

Inb. 

VDss Fraction 

unboun

d 

BBB 

per

m 

CNS 

per

m 

4'-Methyl-

epigallocatechin 

-3.09 -0.12 60.73 -2.74 Yes  No  No 1.64 0.26 -0.93 -3.27 

Andrographis Extract -3.49 1.07 95.36 -3.79 No No  No -0.29 0.28 -0.6 -2.69 

Betulalbuside A -1.94 -0.14 43.96 -3.03 No No  No -0.26 0.65 -1.01 -3.65 

Bisabolone Oxide A -3.63 1.62 96.47 -2.52 No No  No 0.34 0.43 0.55 -3.05 

Carveol -1.78 1.4 95.18 -2.08 No No  No 0.17 0.55 0.56 -2.58 

cis-Carvotanacetol -2.15 1.37 95.17 -1.93 No No  No 0.13 0.47 0.58 -2.12 

Eugenyl Glucoside -1.89 0.58 45.71 -2.87 Yes  No  No -0.38 0.41 -0.99 -3.73 

Gibberellin A17 -2.89 0.82 33.03 -2.74 No No  No -0.89 0.42 -0.77 -3.31 

Gibberellin A19 -2.81 0.96 47.5 -2.74 No No  No -1.6 0.42 -0.68 -3.16 

Gibberellin A20 -2.64 1.19 98.91 -2.74 No No  No -0.83 0.42 -0.21 -3 

Gibberellin A29 -2.66 0.69 71.42 -2.74 No No  No -0.82 0.47 -0.6 -3.11 
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Gibberellin A44 -2.84 1.18 99.3 -2.74 No No  No  -1.11 0.3 -0.18 -2.29 

Gibberellin A51 -2.73 1.14 100 -2.74 No No  No -0.97 0.29 -0.09 -2.41 

Gibberellin A53 -2.82 0.93 53.27 -2.74 No No  No -1.6 0.36 -0.56 -2.31 

Monocrotaline -3.06 0.51 64.76 -3.01 Yes  No  No 0.47 0.74 -0.61 -3.1 

Phellandrenol -1.96 1.49 94.99 -2.33 Yes  No  No 0.22 0.56 0.55 -2.69 

Shikimic Acid -0.52 -0.23 46.68 -2.74 No No  No -0.62 0.8 -0.68 -3.58 

HIA = Human Intestinal Absorption. Skin Perm = Skin Permeability. P-gp = Plasma glycoprotein. VDSS = Volume of Distribution steady State.  BBB 

= Blood Brain Barrier  

 

Table 8: Metabolism, Excretion, and Saturation and Agglutination profile of lead compounds 

Ligand CYP2D

6 sub 

CYP3A4 

sub 

CYP1A

2 inh 

CYP2C1

9 inh 

CYP2C

9 inh 

CYP2D6 

inh 

CYP3A

4 inh 

Total 

Clearanc

e 

Rena

l 

OCT

2 sub 

Fractio

n Csp3 

PAINS 

#alerts 

4'-Methyl-

epigallocatechin 

No No No No No No No 0.35 No 0.25 0 

Andrographis Extrac

t 

NO Yes No No No No No 1.18 No 0.75 0 

Betulalbuside A No No No No No No No 1.69 No 0.75 0 

Bisabolone Oxide A No No No No No No No 1.13 No 0.8 0 

Carveol No No No No No No No 0.23 No 0.6 0 

cis-Carvotanacetol No No No No No No No 0.19 No 0.8 0 

Eugenyl Glucoside No No No No No No No 0.26 No 0.5 0 

Gibberellin A17 No No No No No No No 0.39 No 0.75 0 

Gibberellin A19 NO Yes No No No No No 0.47 No 0.75 0 

Gibberellin A20 No Yes No No No No No 0.42 No 0.79 0 

Gibberellin A29 No Yes No No No No No 0.42 No 0.79 0 

Gibberellin A44 No Yes No No No No No 0.36 No 0.8 0 

Gibberellin A51 No Yes No No No No No 0.42 No 0.79 0 

Gibberellin A53 No Yes No No No No No 0.43 No 0.8 0 

Monocrotaline No No No No No No No 0.73 No 0.75 0 

Phellandrenol No No No No No No No 0.29 No 0.6 0 
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Shikimic Acid No No No No No No No 0.69 No 0.57 0 

Renal OCT2 = Renal Organic Cation transporter 
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Table 9: Toxicity profile of lead compounds 

 

Ligand 

 
AMES 

toxicity 

Max. tolerated 

dose 

hERG I 

inh 

hERG II inh Oral Rat Acute 

Toxicity (LD50) 

Oral Rat Chronic 

Toxicity (LOAEL) 

Hepatotoxicity Skin Sensitisation T. Pyriformis toxicity Minnw toxicity 

4'-Methyl-epigallocatechin No 0.37 No NO 2.29 2.93 No No 0.3 3.75 

Andrographis Extract No 0.13 No No 2.16 1 No No 0.49 1.37 

Betulalbuside A No 1.37 No NO 1.71 3.2 No No 0.29 3.66 

Bisabolone Oxide A No 0.35 No No 1.99 1.86 No Yes 0.73 1.07 

Carveol No 0.84 No No 1.96 1.89 No Yes 0.2 1.67 

cis-Carvotanacetol No 0.82 No No 1.98 1.99 No Yes 0.32 1.36 

Eugenyl Glucoside No 0.86 No No 1.95 3.46 Yes No 0.29 3.8 

Gibberellin A17 No 0.44 No No 2.48 2.7 No No 0.29 3.1 

Gibberellin A19 No 0.4 No No 2.21 2.28 Yes No 0.29 2.49 

Gibberellin A20 No 0.37 No No 2.05 2.14 No No 0.29 1.96 

Gibberellin A29 No 0.26 No NO 2.1 2.5 No No 0.29 2.69 

Gibberellin A44 No 0.15 No NO 2.06 1.96 No No 0.29 1.76 

Gibberellin A51 No -0.14 No NO 2.1 2.36 Yes No 0.29 1.16 

Gibberellin A53 No 0.36 No No 2.2 2.17 Yes No 0.29 1.76 

Monocrotaline No 0.42 No No 2.4 1.99 No No 0.29 3.88 

Phellandrenol No 0.87 No No 1.83 1.81 No Yes 0.09 1.72 

Shikimic Acid No 0.99 No No 1.16 2.96 No No 0.26 4.05 

hERG = human Ether-a-go-go-related Gene. 
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Table 10: Bioactivity profile of front-runner compounds 
 

 

 

Ligand GPCR 

ligand 

Ion 

channel 

mod. 

Kinase 

Inh. 

Nuclear 

Receptor 

Ligand 

Protease 

Inh. 

Enzyme Inh No of Recep. Targets (≤ -7.0 kcal/mol) 

 

1 Andrographis Extract 0.32 0.17 -0.01 0.94 0.26 0.81 16 

2 Gibberellin A53 0.39 0.17 -0.35 0.76 0.18 0.42 6 

3 Gibberellin A19 0.32 0.10 -0.30 0.69 0.30 0.43 15 

4 Gibberellin A51 0.17 0.21 -0.31 0.67 0.16 0.38 14 

5 Gibberellin A44 0.34 0.16 -0.21 0.66 0.19 0.36 16 

6 Gibberellin A17 0.36 0.11 -0.25 0.63 0.18 0.33 17 

7 Gibberellin A29 0.24 0.20 -0.24 0.60 0.19 0.42 15 

8 Gibberellin A20 0.22 0.23 -0.21 0.49 0.09 0.30 7 

9 4'-Methyl-

epigallocatechin 

0.37 0.07 0.11 0.48 0.23 0.39 17 

10 Monocrotaline 0.36 0.38 -0.05 0.47 0.50 0.28 7 

11 Betulalbuside A 0.27 0.35 -0.05 0.38 0.22 0.73 1 

12 Carveol -0.55 0.14 -1.40 0.25 -0.89 0.23 1 

13 Bisabolone Oxide A -0.11 0.10 -0.97 0.24 -0.35 0.56 1 

14 Phellandrenol -0.75 -0.34 -1.07 0.12 -1.14 0.23 1 

15 Eugenyl Glucoside 0.05 -0.03 -0.21 0.02 -0.11 0.32 2 

16 Shikimic Acid -0.38 0.22 -1.13 0.01 -0.37 0.65 1 

17 cis-Carvotanacetol -0.50 0.09 -1.09 0.01 -0.62 0.18 1 

 

 

Table 11: Binding affinities of front runner compounds (post-screening) with cut off value of ≤ -7.0 kcal/mol 
 

S/N Compounds Immunoglobulin-like receptors Lectin-like Receptors Others  

KIR2

DS1 

KIR2

DS2 

KIR2

DS3 

KIR2

DS4 

KIR2

DS5 

NC

R1 

NC

R2 

NC

R3 

PIL

R 

CD16

A 

CD

2 

NKG

2C 

NKG

2D 

NKG

2E 

IL2

Rα 

IL2

Rβ 

γc IL15

Rα 

#  of 

targets 

1 4'-Methyl-

epigallocatechin 

7.1 8.2 7.0 8.1 7.0 8.4 7.5 8.1 7.2 8.0 7.0 * 7.2 8.8 8.9 7.2 8.

3 

7.6 17 

2 Gibberellin A17 8.9 8.3 8.9 9.0 8.6 8.4  8.6 8.8 7.6 7.7 7.3 8.8 7.4 7.7 7.3 7.

4 

7.1 17 

3 Andrographis Extract 8.0 7.1 7.9 7.4 7.6 7.4 * 7.2 8.3 7.7 7.0 7.2 7.4 7.2 7.2 * 7. 7.2 16 
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7 

4 Gibberellin A44 8.2 8.4 8.2 8.2 8.1 8.0 * 8.2 8.3 8.0 7.2 7.0 8.0 * 7.3 7.3 7.

4 

7.0 16 

5 Gibberellin A19 8.3 7.5 8.3 8.1 8.3 8.3 * 8.3 8.5 7.4 7.4 7.2 8.4 7.1 7.4 * 7.

3 

* 15 

6 Gibberellin A29 8.2 7.9 8.1 7.7 7.5 7.7 * 8.5 8.7 8.7 7.2 * 7.8 7.7 7.3 7.3 7.

6 

* 15 

7 Gibberellin A51 7.8 8.1 8.0 8.1 7.8 7.5 * 8.5 8.6 8.1 * 7.6 7.7 7.4 7.0 * 7.

2 

* 14 

8 Gibberellin A20 7.4 7.1 7.4 7.0 * * * 7.5 7.6 8.2 * * * * * * * * 7 

9 Monocrotaline 7.0 7.3 7.1 * * * * * 7.5 7.0 * * 7.1 * 7.0 * * * 7 

10 Gibberellin A53 * 7.1 * 7.4 7.0 * * 7.1 7.4 7.2 * * * * * * * * 6 

11 Eugenyl Glucoside * * * * * * * * 7.0 * * * * 7.7 * * * * 2 

12 Betulalbuside A * * * * * * * * * * * * * 7.6 * * * * 1 

13 Bisabolone Oxide A * * * * * * * * * * * * * 8.1 * * * * 1 

14 Carveol * * * * * * * * * * * * 7.6 * * * * * 1 

15 cis-Carvotanacetol * * * * * * * * * * * * 7.5 * * * * * 1 

16 Phellandrenol * * * * * * * * * * * * 7.8 * * * * * 1 

17 Shikimic Acid * * * * * * * * * * * * * 7.0 * * * * 1 

  9 10 9 9 8 7 1 9 11 10 6 5 11 10 8 4 7 4  

All binding affinity values are negative.

Table 12: Pairwise Ligand Similarity Analysis of active compounds Using Tanimoto Coefficient 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

4'-Methyl-

epigallocatechin 

1 1.00 0.13 0.14 0.07 0.06 0.07 0.25 0.09  0.11 0.09 0.11 0.08 0.11 0.09 0.14 0.1

0 

0.1

3 

Andrographis Extract 2 0.13 1.00 0.22 0.22 0.15 0.12 0.18 0.27 0.28 0.27  0.27 0.29 0.28 0.30 0.22 0.0

9 

0.0

9 

Betulalbuside A 3 0.14 0.22 1.00 0.12 0.07 0.10 0.37 0.13  0.14 0.16 0.17 0.15 0.16 0.14 0.17 0.1

1 

0.1

3 

Bisabolone Oxide A 4 0.07 0.22 0.12 1.00 0.14 0.19 0.19 0.15 0.19 0.21 0.18 0.19 0.19 0.21 0.22 0.1

6 

0.0

7 
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Carveol 5 0.06 0.15 0.07 0.14 1.00 0.51 0.05 0.07 0.08 0.08 0.08 0.08 0.09 0.09 0.08 0.2

4 

0.1

4 

cis-Carvotanacetol 6 0.07 0.12 0.10 0.19 0.51 1.00 0.06 0.06 0.08 0.07 0.07 0.06 0.07 0.09 0.09 0.0

9 

0.0

9 

Eugenyl Glucoside 7 0.25 0.18 0.37 0.19 0.05 0.06 1.00 0.08 0.09 0.10 0.12 0.10 0.12 0.08 0.16 0.0

9 

0.1

3 

Gibberellin A17 8 0.09 0.27 0.13 0.15 0.07 0.06 0.08 1.00 0.80 0.67 0.60 0.66 0.50 0.75 0.21 0.0

5 

0.0

9 

Gibberellin A19 9  0.11 0.28  0.14 0.19 0.08 0.08 0.09 0.80 1.00 0.71 0.63 0.70 0.52 0.80 0.24 0.0

9 

0.1

0 

Gibberellin A20 10 0.09 0.27 0.16 0.21 0.08 0.07 0.10 0.67 0.71 1.00 0.79 0.81 0.67 0.75 0.26 0.0

6 

0.1

0 

Gibberellin A29 11 0.11  0.27 0.17 0.18 0.08 0.07 0.12 0.60 0.63 0.79 1.00 0.68 0.80 0.67 0.27 0.0

6 

0.1

1 

Gibberellin A44 12 0.08 0.29 0.15 0.19 0.08 0.06 0.10 0.66 0.70 0.81 0.68 1.00 0.60 0.74 0.25 0.0

5 

0.1

0 

Gibberellin A51 13 0.11 0.28 0.16 0.19 0.09 0.07 0.12 0.50 0.52 0.67 0.80 0.60 1.00 0.55 0.29 0.0

6 

0.1

0 

Gibberellin A53 14 0.09 0.30 0.14 0.21 0.09 0.09 0.08 0.75 0.80 0.75 0.67 0.74 0.55 1.00 0.23 0.0

6 

0.1

0 

Monocrotaline 15 0.14 0.22 0.17 0.22 0.08 0.09 0.16 0.21 0.24 0.26 0.27 0.25 0.29 0.23 1.00 0.0

9 

0.1

1 

Phellandrenol 16 0.10 0.09 0.11 0.16 0.24 0.09 0.09 0.05 0.09 0.06 0.06 0.05 0.06 0.06 0.09 1.0

0 

0.1

5 

Shikimic Acid 17 0.13 0.09 0.13 0.07 0.14 0.09 0.13 0.09 0.10 0.10 0.11 0.10 0.10 0.10 0.11 0.1

5 

1.0

0 

 

Table 13: Percent Identity Matrix of Protein Target 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

NCR2                                   1 100 25.12 15.56 15.38 21.69 12.79 10.26 15.19 17.24 21.57 10.85 17.69 14.2
9 

12.8
2 

12.8
2 

12.8
2 

11.9
7 

11.9
7 

IL15Rα    2 25.12 100 15.2 14.09 17.13 14.52 19.64 21.05 10.59 14.65 10.45 13.48 15.1

3 

13.7

3 

13.7

3 

13.7

3 

14.3

8 

13.7

3 

IL2Rα 3 15.56 15.2 100 21.08 17.91 11.29 11.27 11.27 13.79 18.09 8.46 9.76 6.57 8.45 7.75 9.15 8.45 8.45 
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NCR3 4 15.38 14.09 21.08 100 26.23 12.16 12.5 12.33 13.57 12.86 9.62 11.58 10.2
8 

12.3
8 

13.3
3 

13.3
3 

15.2
4 

13.3
3 

PILRB 5 21.69 17.13 17.91 26.23 100 16.95 12.07 12.07 13.53 12.5 10.16 11.81 12.5

9 

10.4

2 

13.1

9 

11.1

1 

11.8

1 

11.8

1 

NKG2D 6 12.79 14.52 11.29 12.16 16.95 100 22.06 22.33 15 15.12 13.21 10.58 13.6 11.1

1 

10.1 11.1

1 

11.1

1 

9.09 

NKG2C 7 10.26 19.64 11.27 12.5 12.07 22.06 100 90.04 9.49 21.55 8.26 11.21 16.2
8 

17.9
2 

17.9
2 

15.0
9 

19.8
1 

17.9
2 

NKG2E 8 15.19 21.05 11.27 12.33 12.07 22.33 90.04 100 8.76 21.16 6.36 11.21 14.7

3 

16.9

8 

16.9

8 

14.1

5 

18.8

7 

16.9

8 

 Common γc 9 17.24 10.59 13.79 13.57 13.53 15 9.49 8.76 100 22.22 8.43 11.45 9.85 14.7

5 

13.1

1 

13.6

6 

14.2

1 

13.1

1 

IL2Rβ 10 21.57 14.65 18.09 12.86 12.5 15.12 21.55 21.16 22.22 100 17.52 18.35 13.2
8 

13.2
7 

14.2
9 

14.2
9 

13.2
7 

13.7
8 

CD2 11 10.85 10.45 8.46 9.62 10.16 13.21 8.26 6.36 8.43 17.52 100 18.63 19.0

7 

19.6

8 

20.7

4 

20.2

1 

18.6

2 

19.6

8 

CD16A 12 17.69 13.48 9.76 11.58 11.81 10.58 11.21 11.21 11.45 18.35 18.63 100 21.2 19.6

2 

19.1

4 

20.1 20.1 21.5

3 

NCR1 13 14.29 15.13 6.57 10.28 12.59 13.6 16.28 14.73 9.85 13.28 19.07 21.2 100 34.7
6 

34.7
6 

34.3
3 

33.9
1 

33.4
8 

KIR2DS4 14 12.82 13.73 8.45 12.38 10.42 11.11 17.92 16.98 14.75 13.27 19.68 19.62 34.7

6 

100 89.3

9 

90.2 86.5

3 

86.9

4 

KIR2DS1 15 12.82 13.73 7.75 13.33 13.19 10.1 17.92 16.98 13.11 14.29 20.74 19.14 34.7

6 

89.3

9 

100 92.6

5 

91.4

3 

92.2

4 

KIR2DS2 16 12.82 13.73 9.15 13.33 11.11 11.11 15.09 14.15 13.66 14.29 20.21 20.1 34.3

3 

90.2 92.6

5 

100 91.8

4 

91.4

3 

KIR2DS3 17 11.97 14.38 8.45 15.24 11.81 11.11 19.81 18.87 14.21 13.27 18.62 20.1 33.9
1 

86.5
3 

91.4
3 

91.8
4 

100 92.6
5 

KIR2DS5 18 11.97 13.73 8.45 13.33 11.81 9.09 17.92 16.98 13.11 13.78 19.68 21.53 33.4

8 

86.9

4 

92.2

4 

91.4

3 

92.6

5 

100 
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Table 14: Summary of Receptor - Ligand Interactions and RMSF 

S/N Receptor Total No. of 

interacting residues 

Compounds with highest No. of bonds Total No. of 

bonds 

Types of 

bonds 

Total 

RMSF 

1 KIR2DS1 14 4'-Methyl-epigallocatechin 9 2 1.62 

   Gibberellin A29 8 3 3.63 

   Gibberellin A20 7 3 33.92 

2 KIR2DS2 19 Gibberellin A51 10 3 18.65 

   Monocrotalline 8 3 34.07 

   Gibberellin A44 8 2 27.68 

3 KIR2DS2 13 4'-Methyl-epigallocatechin 9 2 15.19 

   Gibberellin A17 8 3 43.98 

   Gibberellin A20 7 3 22.02 

   Gibberellin A29 7 3 51.13 

4 KIR2DS4 17 Gibberellin A51 8 2 1.47 

   4'-Methyl-epigallocatechin 7 2 9.26 

   Gibberellin A29 7 2 21.32 

   Andrographis Extract 7 2 3.47 

5 KIR2DS5 16 Andrographis Extract 10 3 19.16 

   Gibberellin A44 9 2 4.8 

   Gibberellin A17 5 3 8.29 

6 NCR1 11 Gibberellin A51 10 3 46.9 

   Gibberellin A19 10 2 20.36 

   Gibberellin A44 8 3 29.58 

7 NCR2 5 4'-Methyl-epigallocatechin 6 2 15.76 

8 NCR3 12 Gibberellin A51 9 3 1.03 

   Gibberellin A29 6 3 9.46 

   Gibberellin A20 6 2 6.67 

9 PILR 26 Eugenyl Glucoside 12 3 0.5 

   4'-Methyl-epigallocatechin 11 2 1.34 

   Andrographis Extract 10 2 7.78 

10 CD16 6 Gibberellin A29 10 2 1.56 

   Gibberellin A20 9 2 9.2 

   Gibberellin A44 8 2 17.02 

11 CD2 6 4'-Methyl-epigallocatechin 9 2 3.1 

12 NKG2-C 4 Gibberellin A51 5 2 16.25 

13 NKG2-D  32 4'-Methyl-epigallocatechin 11 2 6.55 

   Gibberellin A17 10 3 7.13 

   Gibberellin A51 9 3 13.15 

   Gibberellin A19 9 3 36.43 

14 NKG2-E  22 4'-Methyl-epigallocatechin 8 2 29.72 

   Betulabuside A 8 2 14.12 

   Shikimic acid 6 2 37.47 

15 IL2Rα 8 4'-Methyl-epigallocatechin 9 2 4.83 

   Monocrotalline 7 2 0.13 

16 IL2Rβ 4 4'-Methyl-epigallocatechin 6 2 8.04 

17 IL2Rɣ 13 Gibberellin A29 11 3 11.79 

   4'-Methyl-epigallocatechin 9 3 1.78 
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   Gibberellin A44 9 2 2.38 

18 IL15Rα 3 4'-Methyl-epigallocatechin 3 2 14.38 

The best 3 (or 4) receptor - ligand Interactions were selected as candidates for Normal Mode Analysis.  

 

 

 
                                        A 

 
                                        B 

Figure 2: Separated, docked and superimposed structure of 1gya as compared to the original structure. (A) Separated, docked & 

superimposed structure of 1gya. (B) Original Structure of 1gya 

 

Conclusion 

With the aim of triggering cytotoxicity, 1,697 natural compounds 

derived from 79 plants were docked against 18 activating NKC 

receptor targets. After rigorous screening, 17 bioactive, non-

promiscuous hit compounds with good physicochemical and 

pharmacokinetic properties were identified.  

To add value to the drug discovery process, lead optimization may be 

necessary to adjust the structures of the compounds to achieve 

stronger binding affinity, greater potency, and better ADMET-

prediction. The identification of the pharmacophores of strong binding 

affinity-compounds, and the modification of their core structural 

moieties, could achieve the ideal pharmacokinetic properties.  

A further molecular dynamics simulation study is required to confirm 

the viability of the 18 drug targets. With the right parameterization, 

the strength and sustainability of the molecular interactions between 

these proteins and the lead compounds will be predicted. 
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