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Introduction 

The susceptibility of biological systems to environmental stressors 

may not be unrelated to over-exposure and compromise of their 

antioxidant defense system. Lead (Pb) is a known heavy metal 

pollutant among other environmental stressors, whose sources of 

exposure are chiefly occupational with the industrial manufacturing of 

lead products.
1,2

 Upon absorption into biological systems, especially 

humans, Pb is distributed through the bloodstream to various 

tissues/organs of the body, mainly the hepatic, renal and reproductive 

tissues, etc., where it bioaccumulates to detrimental levels while a 

small amount of the toxicant appears in urine: the accumulated 

toxicant at this point was reported to affect biological systems at the 

physiological, metabolic and molecular levels, which may evidently 

cause temporary or permanent morphological alterations.
3
 Pb toxicity 

was observed in all tissues, especially the renal, hepatic, 

hematological, central nervous, and reproductive systems with the 

onset of pathologies characterized by oxidative stress.
4
 Therefore, the 

mediation of oxidative stress by Pb was explained as one of the 

mechanisms employed by the toxicant to excessively generate reactive 

oxygen species (ROS).
4,5

  

Under normal physiological conditions, ROS shows no detrimental 

effect, but its over-expression down-regulates diverse physiological 

and metabolic functions, especially in the inhibition of both enzymatic  
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and non-enzymatic defense systems leading to the onset of diseases.
3,4

 

The chronic onset of Pb-mediated oxidative stress may be associated 

with insufficient production of endogenous antioxidants, which may 

not curtail the excessive synthesis of ROS and the aftermath 

consequences are often massive to explain oxidative alterations of 

various components of cells as well as oxidative changes occurring in 

biomolecules thereby resulting in the development of different 

dysfunctions in organ systems.
5,6

 Reports have shown that Pb-

associated dysfunctions in organ systems include: respiratory system 

leading to pulmonary inflammation, reproductive system with the 

development of testicular degeneration, hemorrhagia, sterility, etc., 

skeletal system impairments such as mental retardation, jerky 

movements, ataxia to mention but a few, excretory system with the 

onset of tubular necrosis, impairment of cardiovascular system leading 

to increased blood pressure and arteriosclerosis, and development of 

anemic condition in Pb- related effect on blood cells.
6-8

 

In order to reduce or prevent Pb toxicity to tissues, there may be a 

need to enhance the endogenous antioxidant defense system of 

exposed biological systems. Reports have shown that exogenous 

antioxidant supplementation was a therapeutic strategy, other than 

known chelation therapy with great consequences, to stimulate and 

improve the compromised endogenous antioxidant system.
4,9

 To this 

end, the consideration of synthetic and natural antioxidants was 

emphasized in scientific reports.
10,11

 This development necessitated the 

selection of ascorbic acid (AA) and butylated hydroxytoluene (BHT), 

as natural and synthetic antioxidants, in the present study.  AA, 

otherwise called vitamin C, is a chelating agent with excellent 

antioxidant potential with the capacity to mitigate against Pb toxicity 

through the reduction of bioaccumulated metal in tissues and 

enhanced elimination in urine respectively.
12

 AA is widely distributed 

in nature among fruits, vegetables and some animal sources in which 

the recommended dietary allowances (RDAs) for children and women 

were stated as 45 and 90 mg/kg respectively. Studies have shown that 

AA deficiency in biological systems may be associated with the onset 
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of anaemia, scurvy, deterioration of muscle tissues, infectious 

diseases, and atherosclerosis.
13,14

 It plays a metabolic role in wound 

healing through modulation of collagen synthesis and in the 

biosynthesis of neurotransmitters.
15,16

 The functional role of AA 

during the oxidation of metals as well as the regeneration of other 

antioxidants, particularly β-carotene and α-tocopherol were reported in 

literature, where the industrial value (as it pertains to preservation of 

aroma, flavour, optimization of nutrient content and prolonged shelf 

life of processed foods) and medicinal uses (as a therapeutic 

requirement for diabetes, inflammatory disorders, obesity, stroke, 

cancer, cataracts and glaucoma) of AA were evidently 

highlighted.
13,15,17

  

As a synthetic phenolic antioxidant, however, BHT is used as food 

additive at considerable dose in fat-rich foods and cosmetic products 

to act against lipid oxidation reactions with the aim of reducing 

deterioration.
18,19

 Although the use of BHT as an antioxidant in foods 

and cosmetics was identified, but its LD50 was well established with a 

numerical equivalence that is >2970 mg/kg during oral administration 

in rats. The exposure of rats to high dose of BHT was associated with 

the inhibition of prothrombin in the hepatocytes thereby leading to 

hemorrhagic death.
18

 Primarily, the cytochrome p450-dependent 

metabolism of BHT occurs in the liver with the formation of BHT-

quinone derivative, which has increased affinity for cysteine-rich 

molecules thereby leading to hepatotoxicity.
18,20

 Scientific reports 

have shown the efficacy of BHT against a broad spectrum of lipid-

coated viruses, where it may function as a promoter or anti-promoter 

agent during carcinogenic process.
21

 As a concern of novelty, the 

comparative distinction between BHT and AA with synthetic and 

natural antioxidant origins during Pb-instigated oxidative changes in 

tissues of exposed rats was central in this study. 

 

 

Materials and Methods 

Chemicals 

All chemical reagents used in this study were of analytical grade and 

obtained from Sigma Aldrich, USA. 

 

Animal models used in presents study 

A total of thirty (30) male Wistar rats (140-182 g, 3 months old) were 

procured from the Department of Biochemistry, University, Benin, 

where animals were kept in standard metabolic cages for two weeks of 

acclimatization. Based on the experimental design, the rats were 

subjected to treatment for Twenty-eight (28) days, following standard 

experimental protocols such as nutritional status (regular rat chows & 

water ad libitum) and environmental conditions (like 26 ± 1
o
C, 12-

12 h light/dark cycle & 46 ± 1% R.H) respectively. The study adheres 

strictly to international ethics for handling and caring for experimental 

animals, as highlighted by the European Community Act of 1986. 

 

Randomized experimental block design 

By randomized block design, five experimental groups labelled I-V 

with six rats (n = 6) each were obtained. Groups I and II served as 

negative and positive controls respectively. Based on the report 

presented by Obiwulu
19

 that a single dose administration of 30 mg of 

PbCl2 per kilogram body weight instigated oxidative stress in Wistar 

rats by intraperitoneal injection. This was administered to group II-V 

rats, where group III rats received 25 mg/kg of AA per day for 28 days 

via oral route. Group IV rats received 25 mg/kg of BHT dissolved in 

corn oil per day for 28 days through oral administration. In each case, 

25 mg of AA and BHT were administered orally per kg body weight 

of rats daily for 28 days to group V rats. All oral administration was 

done by means of a gavage 

 

Post-experimental sampling 

At the end of 28 days treatments, blood samples were obtained by 

heart puncture, after overnight fast of rats, by means of hypodermal 

syringe into EDTA bottles and transported immediately to the 

laboratory for centrifugation to collect supernatants at 

2,500 revolution per minute (rpm) for 10 min. The hepatic and renal 

tissues were excised, washed with pre-chilled normal saline, where 

10 % of each tissue (i.e. liver and kidney) were homogenized in 

10 mL of 0.05 M phosphate buffer (pH 7.4) and was centrifuged using 

Search-Tech Laboratory Centrifuge at 15,000 rpm for 20 min for 

supernatants. All supernatants were collected and refrigerated at 4
o
C 

for further biochemical analyses. 

 

Biochemical analyses 

Protein content in each tissue can be determined following the assay 

protocol outlined by Lowry et al.
22

 using bovine serum albumin.
22

 As 

a biomarker of oxidative stress, thiobarbituric acid reactive substances 

(TBARS) in terms of malondialdehyde (MDA) levels were measured 

according to the method of Shafiq-ur-Rehman et al.
23

 based on colour 

formation. The pink colour obtained during the assay was measured 

spectrophotometrically at 535 nm. Enzymatic assays, which involves 

superoxide dismutase (SOD) activity and catalase (CAT) activity, 

were measured to monitor oxidative changes in respective tissues. 

Thus, SOD activity in tissues was measured in accordance with the 

assay procedure put forward by Madesh and Balasubramanian 
24

 on 

the basis of photo-oxidation of nitroblue tetrazolium (NBT). The 

enzyme activity was monitored at 560 nm and expressed in units/mg 

protein. Based on the decomposition of hydrogen peroxide (H2O2), 

CAT activity was evaluated in accordance with the procedure outlined 

by Aebi
25

 such that the change in absorbance was monitored at 

240 nm and its activity was expressed as units/mg protein. 

 
Statistical analysis 

Experimental data were subjected to critical statistical analysis, where 

mean results were represented by bars and the standard error of mean 

(SEM), in each case, was depicted by error bars for six determinations 

(n = 6).  One-way analysis of variance (ANOVA) for the experimental 

groups was compared and the Schefe’s test of significance was 

applied. Bars with different letters differ significantly at p < 0.05. 

 

Results and Discussion 

Pb toxicity among heavy metal pollutants occupies a central reference 

of environmental stressors. Therefore, the present study revealed 

changes in MDA level, as a biomarker of oxidative stress, in tissues 

(blood, liver and kidney) of Wistar rats (Figure 1) during treatment 

with Pb compound, AA, and BHT. Consequently, the single 

intraperitoneal administration of 30 mg PbCl2 per kg body weight (b. 

wt) provoked the development of oxidative stress in blood, hepatic 

and renal tissues of rats with a marked significant increase (p < 0.05) 

in group II rats relative to group I (negative control). However, the 

oral administration of 25 mg/kg b.wt of AA (group III rats), BHT 

(group IV rats) and combined effect (group V rats) revealed a 

significant reduction (p<0.05) in blood, hepatic and renal MDA levels 

in relation to group II rats (positive control), which was a clear 

indication of  improvement on Pb-instigated oxidative stress   in rats. 

This observation further consolidates the fact that 30 mg/kg b. wt of 

Pb compound has the capacity to induce oxidative stress.
18,26

 The 

observed increase in MDA level in the respective tissues of group II 

rats conform with earlier reports that Pb toxicity has the capacity to 

deplete endogenous antioxidant pool due to excessive production of 

ROS, hence the marked induction of oxidative stress. Consequently, 

the observed Pb-induction of oxidative stress in group II rats shows 

the likelihood of toxicity with disruption of hematological, hepatic and 

renal functions due to tubular necrosis of the tissues.
6,27

 However, 

group III, IV and V rats (Figure 1), which showed a significant 

reduction (p < 0.05) in MDA levels as compared with group II rats, 

was a function of AA and BHT with the capacity to scavenge 

ROS.
28,29

 Washio et al.
30

 revealed that AA initiates direct antioxidant 

capacity to scavenge Pb-induced excessive synthesis of free radicals 

thereby protecting biological cells from oxidative damage.  Similarly, 

Obiwulu
19

 reported BHT antioxidant capacity to stimulate depleted 

endogenous antioxidant capacity to significantly reduce Pb-induced 

ROS. These up-regulatory measures by the supplementation with 

exogenous antioxidants showed that the tissues of treated rats, 

particularly group V rats in relation to groups III and IV rats were 

adequately preserved despite their exposure to toxic effects of Pb.  
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The postulation of Pb-instigated oxidative stress reflects its basic 

mechanism to exerts toxicity in tissues of exposed biological systems, 

which can be marked with increased MDA levels and exhausted 

activities of endogenous antioxidant defense systems regardless of 

their nature.
27,31

 SOD activity is one of such endogenous enzymatic 

antioxidants affected by Pb toxicity. Figure 2 clearly explains the 

changes associated with SOD activity in tissues of rats exposed to the 

toxic effect of Pb and exogenous supplementation with natural and 

synthetic antioxidants (AA and BHT) respectively. Here, there was an 

inhibitory effect on serum SOD activity in group II rats relative to 

group I rats at p < 0.05 on exposure to Pb. Although no significant 

difference (p > 0.05) was observed in serum SOD activity for group 

III and IV rats exposed to the toxic action of Pb, but AA and BHT 

supplementation led to significant increase (p < 0.05) in serum SOD 

activity for group III and IV rats, as compared with group II rats. Most 

importantly, group V rats exposed to the toxic action of Pb showed a 

pronounced increase (p < 0.05) in serum SOD activity when 

supplemented with combined action of AA and BHT (when compared 

with groups III and IV rats) relative to group II rats. Similar changes 

were observed in SOD activity for the respective groups in hepatic and 

renal tissues at p < 0.05. Basically, exposure to Pb toxicity generates 

the free radical, ―superoxide anion (O2
-
)‖ as a byproduct of oxygen 

metabolism, which can be further disproportionated into hydrogen 

peroxide (H2O2) by SOD activity.
4,5,24,32

 However, the biological 

function of SOD activity, as mentioned above, is distorted or truncated 

by exposure to the toxic effect of Pb, which has been reported to 

displace SOD’s cofactors (Cu and Zn).32 Therefore, the inhibitory 

effect exerted by Pb on SOD in tissues of group II rats may be 

attributed to the ability of the toxicant to dislodge the enzyme’s 

cofactors, as earlier reported.
19,27,32

 Again, the protection of  tissues of 

exposed rats in groups III, IV and V from oxidative damage , as 

against group II rats, may not be unconnected with the free hydroxyl 

(OH) groups present in AA and BHT, which may pair up with the 

unpaired electron of superoxide anion thereby converting it to a non-

radical, as indicated in available literature.
27

 Finally, the observed  

protection of AA on group III rats exposed to Pb toxicity may be 

attributed to its capacity to regenerate reduced glutathione (GSH), 

capable of quenching lipid peroxidation chain reaction.
32,33

 

CAT, an antioxidant enzyme known to catalyze the decomposition of 

H2O2 into metabolic water (H2O) and molecular oxygen under the 

influence of Zn cofactor.
25,27,34

 In this empirical survey, exposure to Pb 

toxicity and co-treatment with different exogenous antioxidant types 

(AA and BHT) shows the trending mosaic of CAT activity in various 

tissues of Wistar rats (Figure 3). In group II rats treated with a single 

dose of Pb by intraperitoneal injection, significant reductions (p < 

0.05) in serum, hepatic and renal CAT activities were observed when 

compared with group I rats. This may be a sign of inhibition of CAT 

activity in respective tissues of Wistar rats due to over-expression of 

ROS instigated by Pb toxicity, as a mark of conformity to earlier 

reports.
4,19,27,31

 Pb toxicity has been reported to retard heme 

biosynthesis and displacement of the enzyme cofactor (Zn), which 

may eventually inactivate CAT activity over time: the biological 

function of CAT activity in the tissues is disrupted with subsequent 

accumulation of H2O2 that predisposes the host tissues to health 

complications and induction of diverse pathologies such as 

neurodegenerative disorders, cancer and diabetes characterized by 

oxidative stress.
35,36

 However, the inhibitory action of Pb toxicity on 

serum, hepatic and renal CAT activities was relieved during 

supplementation of groups III, IV and V rats with levels of AA, BHT 

and their combinations, as shown in Figure 3. There was significant 

stimulation (p < 0.05) of serum, hepatic and renal CAT activity for 

groups III, IV and V rats in relation to group II rats, as an indication of 

truncating Pb-induced synthesis of ROS, and this may be attributed to 

the proton-donating capacity of AA and BHT.
27

 It should be noted that 

though there were no significant variations (p > 0.05) in serum CAT 

activity for groups III and IV rats, but hepatic and renal CAT activity 

was significantly higher (p < 0.05) in group III rats than group IV rats, 

which may suggest that AA is a better antioxidant relative to BHT. 

Despite the toxic action of Pb, the observed stimulating effect of the 

exogenous antioxidants (AA and BHT) agrees with earlier reports that 

antioxidants of these sorts stimulate and improve overwhelmed 

endogenous antioxidant defense system associated with Pb toxicity.
4,9
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Figure 1: MDA levels in tissues of Wistar rats exposed to Pb, AA and BHT treatments. Each bar designates mean ± SEM (standard 

error of mean) for n = 6, where bars with different letters differ significantly at p < 0.05 
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Figure 3: CAT activity in tissues of Wistar rats exposed to Pb, AA and BHT treatments. Each bar designates mean ± SEM (standard 

error of mean) for n = 6, where bars with different letters differ significantly at p < 0.05 
 

 

Conclusion 

Exposure of biological systems to Pb toxicity certainly instigated 

oxidative stress in which the onset of different degrees of cellular 

injuries and pathologies were marked by the compromized SOD and 

CAT activities. This development may call for exogenous antioxidants 

to supplement the overwhelmed endogenous antioxidants, as observed 

in this study. The use of AA and BHT during exposure of Wistar rats 

to Pb toxicity showed a clear-cut amelioration of induced oxidative 

stress, where AA was a better antioxidant than BHT. The present 

study hereby culminates that natural antioxidant may be recommended 

as a better antioxidant source relative to synthetic antioxidant source 

to relieve Pb toxicity. 
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