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Introduction  

The increase in industrial and agricultural activities results 

in several pollutants being released into the environment, mainly into 

aquatic ecosystems. Metals are among these pollutants commonly 

found in the environment. Many of these metals induce toxic effects 

and accumulate easily in tissues.
1
 Among these metals, mercury is one 

of the most dangerous pollutants in the environment and comes from 

various sources
2
. It is known to accumulate in living organisms, 

causing serious damage. An important feature of mercury toxicity is 

the generation of free radicals.
2
 The generation of reactive oxygen 

species (ROS), such as the superoxide anion, singlet oxygen, hydrogen 

peroxide, and hydroxyl radical, has been one of the underlying agents 

responsible for tissue damage.
3
 Mercury toxicity is also manifested 

through their interaction with sulfur by reducing molecules containing 

a free thiol. The reduction of thiols also leads to increased oxidative 

stress with increased hydrogen peroxide formation and other reactive 

oxygen species (ROS)
4
. Oxidative stress occurs due to an imbalance 

between the production of radical (or reactive) oxygen species and the 

cell's antioxidant capacity. The controlled production of radicals 

appears to be an essential cell signaling mechanism that maintains the 

cell's homeostasis.
5
 These radicals can lead to protein destruction, 

DNA denaturation, lipid oxidation.
5
 

Consequently, it is very important to reduce and eliminate all sources 

that generate the risk of free radical production in living organisms.
6
 

Most plant species in the world possess therapeutic virtues, as they 

contain active compounds that act directly on the organism. 
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They are used in conventional medicine and herbal medicine and are 

known to offer advantages that drugs often lack.
5
 One of the important 

plants in Algeria is Pistacia atlantica Desf. (Anacardiaceae), this plant 

has also been used for the treatment of peptic ulcer and 

hypoglycemic.
6
 

Research on natural antioxidants and the exploitation of various 

secondary metabolites has been particularly studied in recent years. 

Thus, phenolic compounds, particularly flavonoids, have attracted 

attention as a potential source of bioactive molecules. The structure of 

their flavan nucleus is related to their antioxidant capacity. These 

substances are capable of reducing free radicals. Other mechanisms of 

free radical oxidation may include enzyme inhibition and chelation of 

the oligometal that catalyzes the formation of ROS.
6
 The present study 

was carried out to evaluate certain antioxidants' effects on oxidative 

stress parameters and the damage they can cause to the kidneys during 

mercury-induced stress. The antioxidant used in this study is the 

aqueous extract of Pistacia atlantica. 

 

Materials and Methods 

Plant material and preparation of aqueous extract 

The leaves of P. atlantica Desf used in this study were collected from 

Oran (Algeria) in October 2018. The plant’s identification was 

confirmed at the department of Botany of Ahmed Ben Bella 

University 1 (Oran, Algeria) where a specimen (voucher No. LB 

2370) was kept. After the leaves were cleaned and air-dried, they were 

ground to a fine powder and extracted with distilled water (1: 10, w/v) 

at 60°C) for 60 min. The mixture was filtered, and the extract obtained 

frozen and then lyophilized (Freeze-dryer Christalpha 2-4 LSC d 

37520, Germany). 

 

Animals and experimental design 

A total of 24 male Wistar rats with weight of 65 ± 10 g were obtained 

from the Department of Biology, Faculty of Nature and Life Sciences, 

Oran 1 University. This study was approved by our Institutional 

Ethical Committee for Animal Research (agreement number 

45/DGLPAG/DVA. SDA.14). The General Guidelines for the Use of 

Living Animals in Scientific Investigations Council of European 
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mg/kg body weight to rats for 32 days. These results show that HgCl2 caused a significant 

depletion of the glutathione level and the enzymatic activity of the antioxidant system catalase 

(CAT), Glutathion peroxidase (GPx,), Glutathion S transferase (GST) at the renal level. These 

changes were associated with increased lipid peroxidation expressed by a high level of renal 

Malondialdehyde (MDA) and hydroperoxides (LOOH). However, supplementation with the 

aqueous extract of Pistacia atlantica modified the toxic effects of mercury by reducing lipid 

peroxidation. These findings may indicate an antioxidant and protective effect of this plant's 

extract against mercury's harmful effect.  
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Communities were followed (Council of European Communities, 

1986). The animals were allowed free access to tap water and rodent 

chow, housed under standard conditions with a 12/12 h light-dark 

cycle at 25 ± 2°C, controlled humidity (60 ± 5%), and air circulation.  

The rats were randomly divided into three equal groups (six rats in 

each group). They received the treatment as follows: Group I served as 

control (T), receiving an intraperitoneal injection of saline solution 

(NaCl; 0.9%) once a week for 32 days. Group II consisted of Hg 

intoxicated rats which were given a dose of 2.5 mg/kg body weight 

(b.wt.) of HgCl2 by intraperitoneal injection for four weeks. Group III 

serving as treated group (HgCl2+P.at) received HgCl2 (2.5 mg/kg body 

weight) intraperitoneally and were given (150 mg/kg b.wt) aqueous 

extract of P. atlantica (P.at) orally for 32 days. No deaths or toxicity 

symptoms were recorded after oral administration of single doses of 

the lyophilized tested extract at any dose level up to the highest dose 

tested to ensure its safety. After the end of treatment, the experimental 

animals (rats) were sacrificed by decapitation (solution of chloral, 3%) 

to obtain blood and kidney tissues. 

 

Determination of antioxidant markers in kidney tissues 

The adult rat kidney from the different studied groups was removed 

and rapidly dissected. After crushing and homogenization, the tissues 

were placed in a PBS buffer (0.1 mol/L; pH=7.4) supplemented with 

sucrose (0.3 mol/L) and potassium chloride (0.08 mol/L) using a 

WiseTis® homogenizer (HG-15A; Germany) and maintained at a 

temperature of 4°C. The homogenate was centrifuged at 7600 rpm for 

10 minutes at 4°C to obtain supernatant, which was further centrifuged 

at 12000 rpm for 10 minutes to remove cellular debris and was then 

stored at -80°C. 

Lipid peroxidation (LPO) levels in the kidney were assessed by 

TBARS (thiobarbituric acid reactive substances) assay using the 

method described by Ohkawa et al.
7
 Reduced glutathione levels 

(GSH) were determined by the colourimetric method based on the 

reducing properties of thiol groups (SH) described by Ellman.
8
 Renal 

tissue protein content was assessed using the method of Lowry et al. 
9
 

Determination of catalase activity (CAT) was done by the method of 

Aebi et al.
10 

Glutathione peroxidase (GPx) was assessed by the 

method of Rotruck et al. 
11

 Glutathione S-transferase (GST) was 

determined by the method described by Habig et al. 
12 

 and superoxide 

dismutase (SOD) assayed was done by the method of Marklund and 

Marklund.
13

 The results were expressed as Units/mg protein (mmol 

H2O2 degraded/mg of protein, nmol /mg proteins, µmol/mg 

proteins/min, µmol/mg of proteins. 

 

Statistical analysis 

The results were represented as mean values ± standard error (mean ± 

SE). Data were analyzed by SPSS (Statistical Packages for Social 

Science, version 23.0, IBM Corporation, New York, USA) using one-

way analysis of variance (ANOVA) followed by Least Significant 

Difference test (LSD) with p = 0.05, for comparison of various 

treatments. A student’s t-test was used to determine the significant 

difference among two different. 

 

Results and Discussion 

Intoxication with HgCl2 is associated with increased production of 

reactive oxygen species (ROS), which interacts with sensitive 

biological macromolecules leading to lipid peroxidation, DNA 

damage (mutagenesis), and protein oxidation.
14

 Studies have also 

revealed that it is associated with nephrotoxicity.
15

  

The study results show a significant decrease in GSH of -55.55% at 

the renal level in the mercury chloride poisoned lot compared to the 

control (Figure 1) due to direct mercury attacks on thiol groups of this 

protein. The toxicity of HgCl2 is attributed to Hg's high affinity for 

thiol, which allows it to deplete cellular GSH and damage thiol 

proteins and enzymes.
16

 The study results also show a significant 

decrease in lipid peroxidation of -56.23% at the renal level in mercury 

poisoned rats treated with Pistacia atlantica extract compared to those 

treated with mercury chloride (Figure 2). There was also a significant 

decrease in the levels of TBARS in the mercury intoxicated group 

treated with the aqueous extract of Pistacia atlantica. This effect may 

be due to flavonoids in the extract known to prevent lipid peroxidation 

due to their high propensity to scavenge free radicals.  

 

 
Figure 1: Effects of P. atlantica on GSH level (nmol /mg 

proteins) in kidneys. 
The results are represented by the mean ± standard deviation (Mean ± 

SE). P <0.05 (*) = indicates a significant difference in the poisoned 

rats compared to controls. (***) = indicates a significant difference in 

the poisoned rats treated with the aqueous extract of P.at compared to 

the control rats p ˂0.05. 

 

 
Figure 2: Effects of P. atlantica on TBARS level (* 10⁻⁵ 

nmol/g) in kidneys. 
The results are represented by the mean ± standard deviation (Mean ± 

SE). P <0.05 (*) = indicates a significant difference in the poisoned 

rats compared to controls. (**) = indicates a significant difference in 

mercury-poisoned rats treated with the aqueous extract of P. at 

compared to mercury-poisoned rats. (***) = indicates a significant 

difference in the poisoned rats treated with the aqueous extract of P. 

atlantica compared to the control rats (p ˂ 0.05). 
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Table 1: Changes in blood elements in the treatment groups 
  

LSD for difference 

 in between groups 
P-value F test 

Group III 

N = 10 

Group II 

N = 10 

Group I 

N = 10 
Variables 

 

0.88 

NS 
0.13 

12.4 ± 0.88
**

 

 

12.3 ± 0.8
** 

 

12.5 ± 0.67
NS 

 

Haemoglobin (mg/dL) 

 

P1 < 0.001 

P2 = 0.004 

P3 < 0.001 

<0.001 

HS
 76.5 13.2 ± 0.75

** 

 

9.6 ± 0.58
** 

 

12.2 ± 0.69
NS 

 

Haemoglobin after 1 month 

 

 
0.61 

NS 
0.51 

362.7 ± 44.98
## 

 

335.5 ± 73.2
## 

 

341.7 ± 68.7
# 

 

Platelets 

 

P1 < 0.001 

P2 < 0.001 

P3 < 0.001 

<0.001 

HS 
76.5 538 ± 75.8

## 

 

166.8 ± 51.1
## 

 

332.5 ± 72.1
# 

 

Platelets after 1 month (L) 

 

 

0.79 

NS 
0.24 

7.79 ± 1.7
N 

 

7.83 ± 1.8
N 

 

8.26 ± 1.5
N 

 

WBCs 

 

P1 < 0.001 

P2 = 0.03 

P3 < 0.001 

<0.001 

HS 
26.3 9.43 ± 1.7

** 

 

4.57 ± 1.11
** 

 

7.86 ± 1.7
N 

 

WBCs after 1 month 

 

 0.96 

NS 
0.04 

3.22 ± 0.71
## 

 

3.25 ± 0.81
## 

 

3.31 ± 0.62
N 

 

Lymphocytes 

 

P1 < 0.001 

P2 = 0.04 

P3 < 0.001 

<0.001 

HS 
27.1 3.91 ± 0.3

## 

 

1.93 ± 0.81
## 

 

3.31 ± 0.63
N 

 

Lymphocytes after 1 month 

 

 
0.83 

NS 
0.19 

5.53 ± 0.96
¥¥ 

 

5.37 ± 1.14
¥¥ 

 

5.22 ± 1.2
N 

 

Neutrophil 

 

P1 < 0.001 

P2 = 0.02 

P3 < 0.001 

<0.001 

HS 
43.5 6.34 ± 0.62

¥¥
 

 

2.33 ± 0.12
¥¥ 

 

5.25 ± 1.16
N 

 

Neutrophil after 1 m. 

 

*The values in the upper row for each parameter represent the baseline values. All data are expressed as Mean ± SD  

The P-value for change in Hb within groups by paired t-test within each group NS means non-significant ** means highly significant P1<0.001 

The P-value for change in platelets within groups by paired t-test within each group # means significant P1<0.05 ## means highly significant P<0.001 

The P-value for change between groups of WBCs N means non-significant 

The P-value for change in WBCs within groups
N
 means non-significant P˃0.05 ** means highly significant P<0.001 

The P-value for change in lymph within groups
#
 groups

N 
means non-significant P˃0.05 

##
 means highly significant P<0.001 

The P-value for change in neutrophil within groups
N
 means non-significant P˃0.05 

¥¥
 means highly significant P<0.001 

P1: for the difference between group I and II, P2: for the difference between group I and III, P3: for the difference between group II and I 

 

Lipid peroxidation is mostly initiated by hydrogen abstraction leading 

to oxidative damage of polyunsaturated fatty acids (PUFA) in 

macromolecules. Flavonoids have been shown to reduce highly 

oxidizing free radicals such as superoxide, peroxyl, alkoxyl, and 

hydroxyl radicals through different mechanisms by donating a 

hydrogen atom to free radicals and metal ions chelation associated 

with the inhibition of free radical generation. Chelation of metal ions 

by flavonoids has been considered to prevent lipid peroxidation by 

limiting the metal ion's access to lipid hydroperoxides (LOOH).
17-19   

As shown in Figure 3, a significant increase (P <0.05) in the 

Hydroperoxyde level in the kidney tissue was observed in the 

intoxicated rats when compared to the control groups. The Hg chloride 

treatment induced significantly decreased (P˂0.05) of catalase (Figure 

4) was noted at the renal level in the HgCl2 group and in group 

HgCl2+P.at compared to the control that may be explained by the 

highest renal mercury load according to Agarwal et al.
20

 The highest 

concentration of mercury was observed in the kidneys followed by 

liver and blood. The reducing activity of this enzyme maybe due by 

direct attack through its binding to thiol groups on its active site.
18

 The 

result shows that there were no significant differences in terms of 

SOD activities in the kidney tissue of intoxicated and treated rats 

(Figure 5). There was a significant decrease in kidney function of -

45.03% (GPx) and -60.52% (GST) activity in the intoxicated group 

compared to the control. Similarly, there was a significant (p ˂ 0.05) 

decrease in kidney GPx and GST activity in the group treated with 

Pistacia atlantica extract in the kidney (-49.04 and -61% respectively) 

(Figures 6 and 7). The decrease in GST and GPx may also be 

explained by the reduction in the rate of reduced GSH glutathione 

from its reduction to oxidized GSSG. GSH is essential for the 

reactions of GST and GPx enzymes. This report is consistent with that 

of Mleiki et al.
19

 who proposed that GST inhibition has been attributed 

to the direct action of the metal on the enzyme or indirectly via the 

production of ROS that interacts directly with the enzyme leading to 

the depletion of its substrate (GSH), and the downward regulation of 

GST genes through different mechanisms. 

 

 
Figure 3: Effects of P. atlantica on hydroperoxide level (10⁻

4
 

nmol/g) in kidney. 
The results are represented as the mean ± standard deviation (Mean ± 

SE). P <0.05 (*) = indicates a significant difference in the poisoned 

rats compared to controls. 
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Figure 4: Effects of P. atlantica on CAT level (mmol 

H2O2/mg of protein) in kidney. 
The results are represented by the mean ± standard deviation (Mean ± 

SE). p <0.05 (*) = indicates a significant difference in the poisoned 

rats compared to controls. (***) = indicates a significant difference in 

the poisoned rats treated with the aqueous extract of P.at compared to 

the control rats p ˂ 0.05. 

 

 
Figure 5: Effects of P. atlantica on SOD level (µmol/mg of 

proteins) in kidney. 
The results are represented by the mean ± standard deviation (Mean ± 

SE). p <0.05 (*) = indicates a significant difference in the poisoned 

rats compared to controls. (***) = indicates a significant difference in 

the poisoned rats treated with the aqueous extract of P.at compared to 

the control rats p ˂0.05.  

 

 
Figure 6: Effects of P. atlantica on GPx level (nmol /mg 

proteins) in kidney. 
The results are represented by the mean ± standard deviation (Mean ± 

SE). p < 0.05 (*) = indicates a significant difference in the poisoned 

rats compared to controls. (***) = indicates a significant difference in 

the poisoned rats treated with the aqueous extract of P.at compared to 

the control rats p ˂ 0.05. 

 

Figure 7: Effects of P. atlantica on GST level (µmol/mg of 

proteins) in kidney. 
The results are represented by the mean ± standard deviation (Mean ± 

SE). p < 0.05 (*) = indicates a significant difference in the poisoned 

rats compared to controls. (**) = indicates a significant difference in 

mercury-poisoned rats treated with the aqueous extract of P. at 

compared to mercury-poisoned rats. (***) = indicates a significant 

difference in the poisoned rats treated with the aqueous extract of P.at 

compared to the control rats p ˂ 0.05.  
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The decrease in GST at the renal level induces an increase in GSH 

levels. Perhaps because the plant has effectively eliminated 

xenobiotics and lipid peroxidation through flavonoids associated with 

lipid peroxidation's effective inhibition, leading to a decrease in the 

GST. It may also be due to the kidney's sensitivity to mercury, 

knowing that it is the first organ of mercury accumulation, leading to 

an imbalance in certain enzymes' activity. In the intoxicated mercury 

group treated with Pistacia atlantica extract, no difference was 

recorded, suggesting that the effect of mercury is still present; these 

results do not agree with those of Agarwal et al.
20 

 

Conclusion 

This study shows that Pistacia atlantic leaf extract did not 

significantly change renal functions indices in HgCl2 treated rats.  
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