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Introduction  

 Enzymes have been used in daily human activities since time 

immemorial, demonstrating the inherent uniqueness of this group of 

natural catalysts. Lipases, a prominent example, are involved in the 

catalysis of triacylglycerides to release fatty acids, diacylglycerol, 

monoacylglycerol, and glycerol 1,2 They are also known to catalyze 

different bioconversion reactions in living organisms.3 Over the years, 

lipases have been produced by microorganisms, plants, and animals. 

Interestingly, microbial lipases have unique properties such as fast 

growth, ease of genetic manipulation, specificity, selectivity, high 

stability, low production cost, and absence of seasonal fluctuations. This 

has increased their demand in industrial sectors such as textile, 

detergent, cosmetics, pharmaceuticals, agriculture, food, and paper.3, 4 

It is noteworthy that the global market value for microbial lipase was 

$349.8 million in 2019 and is estimated to reach $428.6 million by 

2025.3 Major producers of lipases have been identified as gram-negative 

bacteria, especially Pseudomonas.5 and Arthrobacter. Others include 

Bacillus, Staphylococcus, Streptococcus, Enterobacter. Water, soil, and 

oil-contaminated sites have served as reservoirs for lipase-producing 

microorganisms. 
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Approximately 99% of soil microorganisms are yet to be explored in 

the laboratory, making soil an ideal source for unknown functional 

organisms.6 Since enzymes are proteinous, the genes coding for the 

presence of the proteins are known to influence enzyme function and 

structure in the cells of living organisms. Therefore, the expression of 

lipase production by some bacterial species can be attributed to the 

presence of some lipase-encoding genes. For instance, LipA, which is 

the gene encoding the lipase activity of some Pseudomonas species, has 

been reported by some authors.7, 8 In addition, agitation speed, 

incubation period, pH, temperature, and carbon and nitrogen sources are 

some fermentation conditions affecting enzyme production. Since the 

production medium contributes to almost 40 % of the total cost, there is 

a need to optimize different factors that would enhance lipase 

production.9, 10 Although some studies have addressed the optimization 

of various parameters for lipase production, each bacterial isolate has 

its specific nutritional and environmental parameters which enhances 

their growth and enzyme production. In addition, there is a continuous 

search for bacterial isolates capable of optimally producing the enzyme 

for various industrial uses. Hence, this research aimed to optimize 

different culture conditions that would enhance lipase production by the 

selected isolate.  

 

Materials and Methods 

Microorganisms 

The bacterial isolates used in this study were previously isolated from 

engine oil-contaminated soil in Ado-Ekiti, Ekiti State, Nigeria. 

 

Screening for Enzyme Production 

The lipolytic activity of the bacterial isolates was tested by slightly 

modifying the procedure by Sirisha et al.11 The pure bacterial isolates 

were spot inoculated on the solidified agar, and the plates were 
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incubated at 37oC for 24 - 72 h. The colonies with a zone of clearance 

were considered positive, while an uninoculated plate served as a 

control. 

 

Identification of the Bacterial isolate 

The highest lipase producer following the quantitative screening was 

identified using morphological and biochemical characterizations such 

as catalase, gelatin, oxidase, motility, and citrate. For molecular 

identification, a DNA isolation kit (Promega, USA) was used to isolate 

and purify the genomic DNA of the bacteria isolates based on the 

manufacturer's instructions.12 The 5′ end of the 16S rDNA gene was 

amplified as outlined by Muhonja et al.13 The PCR products were 

visualized through electrophoresis on a 2% agarose gel with ethidium 

bromide added directly. The 1.5kbp products were subjected to Sanger 

dideoxy sequencing.  

 

PCR Detection of Lipase Gene 

Molecular investigation of lipase-coding genes was done by simple 

PCR on the extracted DNA using LipA primers: Primer1: Sense “5´-

ATGGTTCACGGTATTGGAGG-3' Primer2: Antisense 5´-

CTGCTGTAAATGGATGTGTA-3' ”.14 Lipase A gene sequence 

amplified by PCR was approximately 371 bp. A total of 25 µL was used 

for the amplification, with each reaction mixture including the master 

mix (10 µL), primer (1 µL), molecular grade (4 µL), and DNA template 

(3 µL). A negative control (a reaction lacking the template DNA) was 

included for amplification. The PCR conditions for the amplification 

were: initial denaturation at 94oC for 4 min, 30 cycles of 5 sec at 94oC 

and 20 sec at 59oC, and a final extension of 5 min at 72oC. The gel 

electrophoresis was done on a 2% agarose gel by slightly modifying the 

method of Odeyemi et al.15 The gel was electrophoresed at 120V for 

45min, visualized by ultraviolet trans-illumination, and photographed. 

After that, the size of the PCR product was estimated.  

 

Submerged Fermentation of Pseudomonas aeruginosa ECS3 

By modifying the method of Mobarak-Qamsari et al.16, a medium of the 

following composition was used (%, w/v): NaCl (0.25 g), MgSO4·7H2O 

(0.04 g), peptone (0.5 g), glucose (0.5 g), K2HPO4 (0.09 g), CaCl2 (0.04 

g), (NH4)2SO4 (0.1 g); olive oil (1.0%), pH 7 was autoclaved at 121oC 

for 15 min. The medium was inoculated with the bacterial isolate and 

was incubated at 37oC for 24 h. After that, the medium was centrifuged 

at 4000 rpm for 20 min while the supernatant was used to evaluate the 

enzyme’s activity.  

Lipase Activity 
The enzyme assay was done following the method outlined by Alami et 

al.17 with slight modifications. The reaction mixture was incubated at 

room temperature for 15 min, and absorbance was measured using a 

spectrophotometer at 410 nm. 

 

Optimization of Culture Conditions 

The following parameters were optimized for lipase production, and the 

experiments were done in triplicates, except pH, which was presented 

as an average of duplicate readings. 

 

Temperature 

By modifying the method of Kamaladevi et al.18, the incubation 

temperature of the fermentation medium was varied between 25 and 

60oC, at pH 7.0 for 24 h. The lipase activity was determined as earlier 

stated.  

 

pH  

By modifying the method of Devi et al.19, the pH temperature of the 

fermentation medium was varied between 5 and 10, using different 

buffer systems. A pH meter was used to adjust the medium before 

sterilization, and the flasks were incubated at 37oC for 24 h. 

 

 

Incubation period 

The best incubation period was studied by modifying the method of 

Kamaladevi et al.18 The fermentation flasks were incubated in an 

incubator for varying periods (12 to 72 h), pH 7.0 at 37oC. At a 12-h 

interval, the flasks were withdrawn, and the enzyme activity was 

evaluated.18  

 

Carbon Source 

Different carbon sources (0.5% w/v), such as maltose, galactose, starch, 

glucose, sucrose, lactose, and fructose, were supplemented into the 

medium using the modified method of Rawway et al.20 Experimental 

conditions used were pH 8.0, the temperature of 35oC. At the same time, 

the fermentation flasks were incubated for 24 h using an incubator. 

These were the optimum conditions gotten earlier. After that, their 

individual effects were determined.21  

 

Nitrogen Source 

This was estimated by incorporating NaNO3, KNO3, NH4Cl, 

(NH4)2SO4, urea, gelatin, peptone, and yeast extract as nitrogen sources 

into the medium. This was measured by weighing 0.5 g of the individual 

nitrogen sources into the fermentation medium, pH 8.0. Incubation 

conditions were at 35oC for 24 h using an incubator. After that, their 

individual effects were determined.21 
 

Substrate concentration 

The effect of substrate concentration, casein, was studied by varying 

different substrate levels (0.5, 1, 1.5, 2, and 2.5% v/v) in the production 

medium. This was measured by weighing 0.5 g of the individual 

nitrogen sources into the fermentation medium, pH 8. Incubation was at 

35oC for 24 h using an incubator.  

 

Agitation speed 

By modifying the method of Veerapagu et al.22, the fermentation flasks 

were incubated on a rotary shaker, with a rate varying between 100 and 

200 rpm, pH 8 and 24 h of incubation. Another flask was maintained at 

static conditions. Afterward, the enzyme activity was determined. 
 

Results and Discussion 

The isolates screened, which were ECS1, ECS3, ECS11, ECS14, ECS 

19, ECS24, and ECS28, all had a zone of hydrolysis with a diameter of 

11, 12, 4, 8, 8, 5, and 6 mm, respectively, on tributyrin agar plates. 

Isolate ECS3, which had the highest zone of hydrolysis, with a diameter 

of 12 mm, was selected for further studies. The highest-producing 

isolate had a smooth surface, a circular colony shape, and was greenish 

on a nutrient agar plate. The microscopic identification revealed isolated 

ECS3 as a Gram-negative rod-shaped bacterium. It was positive for 

catalase, gelatin, oxidase, motility, and citrate. In addition, it utilized 

monosaccharides, disaccharides, and sugar alcohols (mannitol and 

sorbitol). On NCBI BLASTn, the 16S rRNA gene sequences of isolate 

ECS3 were compared to closely related 16S rRNA sequences. Isolate 

ECS3 had 100% similarity with Pseudomonas aeruginosa AT1RP4 

accession number LT797517.1. 

PCR Amplification of lipase (LipA) gene of Pseudomonas aeruginosa 

is shown in Figure 1. While Pseudomonas aeruginosa ECS3 amplified 

the LipA gene region, positive bands of 371 bp validated that the LipA 

gene was present in the isolate. Some similar studies revealed that 

different Pseudomonas species isolated from abattoir soil and vegetable 

oil-polluted soil produced lipase.23, 24 The lipase gene was confirmed in 

Pseudomonas aeruginosa7 and Aspergillus flavus. 25 The ability of the 

organism to hydrolyze the substrate clearly shows that the genome 

harbors the relevant gene. 

Parameters influencing enzyme production include temperature, 

incubation period, pH, etc. It was noticed that lipase activity increased 

up to 35oC, which was the optimum, followed by a decline of more than 

50%. This indicates that Pseudomonas aeruginosa can produce lipase 

at 35oC. It appears that the lipase activity slightly increased at 45oC, 

possibly due to environmental factors (Figure 2). Similarly, lipase 

production by Pseudomonas sp., Penicillium fellutanum, Kocuria flava 

Y4, and Providencia stuartii was stimulated at 35oC.26-29 Lipase from 

Staphylococcus sp., Bacillus cereus, and Geobacillus 

stearothermophilus, on the other hand, were maximally obtained at 

37oC,30 45oC,31 and 60oC,32 respectively. This shows that the physical 

properties of the cell membrane, energy metabolism, and translational 

synthesis of proteins are affected by temperature.33 



                               Trop J Nat Prod Res, June 2023; 7(6):3240-3245                 ISSN 2616-0684 (Print) 

                                                                                                                                                  ISSN 2616-0692 (Electronic)  

 

3242 

 © 2023 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License 

 

Lipase production by Pseudomonas aeruginosa increased from pH 5 to 

pH 8. At pH 7, more than 50% of the enzyme’s activity was retained, 

while the activity peaked at pH 8. After that, there was a decline in 

enzyme activity (Figure 3). It was also noticed that enzyme activities 

were greatly retarded at pH 5 and 10. This shows the alkalophilic nature 

of the bacteria. Lipases that thrive in alkaline conditions are of great 

advantage in industrial processes. Some researchers in their 

investigations also reported a maximum pH of 8 for the lipase activity 

of Kocuria flava Y4,28 Staphylococcus sp.30, and Bacillus cereus 

NC7401.34 Meanwhile, pH 7 was reported for Pseudomonas sp. and 

Providencia stuartii,35, 29 while Bacillus species produced lipase at an 

acidic pH of 5.36 A relationship exists between environmental pH and 

enzyme production by microorganisms. In addition, the distribution of 

charges on enzyme molecules and substrates often determines the 

binding of the substrate and catalysis.37 

The effect on the incubation period revealed 100% enzyme activity at 

24 h, followed by a decline. About 91 and 64% of activity were retained 

after 36 and 48 h, respectively. Beyond 48 h, lipase activity declined 

rapidly (Figure 4). 

 
Figure 1: PCR Amplification of lipase (LipA) gene of 

Pseudomonas aeruginosa. Key: M: Molecular marker; 1: 

Positive control; 2: Pseudomonas aeruginosa; 3: Negative 

control 
 

 
Figure 2: Effect of temperature on lipase activity 
 

 

 
Figure 3: Effect of pH on lipase activity 

 

 
Figure 4: Effect of incubation period on lipase activity 
 

This was confirmed by similar results where the lipase production by 

Penicillium fellutanum and Bacillus stearothermophilus was enhanced 

after 24 h of incubation.27, 38 Oni et al.39 reported an optimum incubation 

period of 18 h for lipases produced by Bacillus subtilis and Bacillus 

cereus. However, some studies revealed an incubation period of 48h for 

maximum lipase production by Pseudomonas aeruginosa and 

Geobacillus stearothermophilus, respectively.32, 26 The short incubation 

period puts this enzyme in an advantageous position because it tends to 

increase the rate of turnover of this enzyme production. A relationship 

exists between the incubation period and enzyme production to a certain 

degree, where enzyme activity tends to reduce beyond the optimum 

incubation condition. At prolonged incubation periods, low enzyme 

activity is often noticed. This may be caused by moisture loss, a 

reduction in nutrients, pH changes, the buildup of toxic by-products, or 

the fermentation medium containing proteases.32, 40 

This investigation shows that the addition of fructose as a carbon source 

inhibited enzyme production, while others enhanced enzyme 

production. The addition of lactose to the medium enhanced its activity, 

thus promoting enzyme production (Figure 5). This is consistent with 

previous studies in which lactose encouraged lipase production.27, 38 

Meanwhile, glucose-enhanced lipase production by Pseudomonas sp. 

and Kocuria flava Y4.35, 28 Contrarily, the lipase of Pseudomonas 

aeruginosa was not enhanced by any carbon source as compared with 

the control.26 Since lipases are inducible enzymes, carbon sources often 

promote their gene expression. Carbon sources, which supply energy 

for growth and enzyme production, are catabolized by carbon catabolite 

regulation (CCR).41 All the nitrogen sources enhanced lipase production 

except KNO3, as observed in this study. This result also revealed the 

preference of the bacteria for organic nitrogen sources as all the organic 
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nitrogen enhanced the enzyme activity compared to the inorganic 

nitrogen source. The most effective nitrogen source was yeast extract, 

followed by peptone (Figure 6). In previous studies, P. aeruginosa,6 

Kocuria flava Y4,28 B. subtilis, B. cereus,39 and Isolate PKRU-942 were 

reported to utilize yeast extract for lipase production. In addition, KNO3 

did not support lipase production by P. aeruginosa.6 However, some 

Pseudomonas and Bacillus species utilized peptone35 and tryptone43 as 

good nitrogen sources for lipase production. There were reports from 

previous studies where lipase production was greatly enhanced by 

organic nitrogen sources.44, 45 Contrarily, the investigation of Demirkan 

et al.31 showed that inorganic nitrogen sources were more effective in 

lipase production. Amino acids and growth factors are essential during 

enzyme production, and these can be readily provided when nitrogen 

sources are incorporated into the medium.46 Each microorganism has its 

preferred nitrogen source. 

The stimulatory effect of the concentration of the inducer used in this 

study was noticed. An increase was detected up to 1% (Olive oil), 

followed by a gradual decline (Figure 7). Concentrations above 1% 

reduced lipase activity because microbial growth is inhibited at higher 

concentrations.47 In their investigation, Shamim et al.48 reported a 

positive influence of 1% olive oil on lipase production by Bacillus 

glycinifermentans. Using natural oil, such as olive oil, as the substrate 

is a significant factor in this study because they generally induce or 

influence lipase production.49 They also contain oleic acid, which is 

characterized by a high level of monounsaturated fatty acids, and this 

has been shown to aid cell growth.50 

The lipase production was enhanced at 120 rpm when compared with 

the activities recorded at static conditions, and this may be because the 

oxygen in the medium was correctly dispersed (Figure 8).  

 

 
Figure 5: Effect of carbon sources on lipase activity 
 

 
Figure 6: Effect of nitrogen sources on lipase activity 

 

Above 120 rpm, lipase activity was noticed to decrease. Similarly, the 

lipase enzyme produced by Bacillus cereus exhibited its peak activity 

at 120 rpm.51 Barik et al.28 also observed an agitation speed of 110 rpm, 

closely related to our findings. In contrast, Abol-Fotouh et al.32 reported 

a higher agitation speed of 160 rpm. The decline could be due to the 

digestion of the enzyme by intracellular enzymes such as protease and 

esterase during cell disruption, accumulation of hydrogen peroxide, and 

enzyme denaturation production.35,52,53 

 

Conclusion 

The lipase activity of Pseudomonas aeruginosa ECS3 was modulated 

by investigating the impacts of physicochemical parameters. A 

temperature of 35oC, a pH of 8, and a 24 h incubation time increased 

lipase activity. The best carbon and nitrogen sources were lactose and 

yeast extract, respectively. Others include agitation speed (120 rpm) and 

1% substrate concentration. The optimum parameters obtained will help 

in the maximum production of the enzyme. 
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Figure 7: Effect of substrate concentration on lipase activity 
 

 
Figure 8: Effect of agitation rates on lipase activity 
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