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Introduction  

            Diterpenes are a diverse class of 20-carbon compounds formed 

by condensation of four isoprene units.1 They are classified as linear, 

bicyclic, tricyclic, tetracyclic, pentacyclic or macrocyclic diterpenes, 

depending on their core structures. Among the tricyclic diterpenes are 

the abietane diterpenes or abietanes that are characterized by three fused 

six-membered rings and alkyl functional groups at carbons 4, 10 and 

13.2 Some examples of abietanes are ferruginol, sugiol and hinokiol. 

Diterpenes notably abietane diterpenes including their synthetic 

derivatives have generated much research interest because of their 

diverse biological activities and pharmacological properties.2,3 They 

include antimicrobial, anti-leishmanial, anti-plasmodial, antifungal, 

anti-cancer, cytotoxic, antiviral, antiulcer, gastroprotective, 

cardiovascular, antioxidant as well as anti-inflammatory properties. 

Recently, the anti-cancer properties of abietane diterpenes from 

rosemary (carnosic acid, carnosol and rosmanol) have been reviewed.4  

In this short article, the chemistry, sources, contents and 

pharmacological properties of ferruginol and sugiol (abietane 

diterpenes) are reviewed for the first time. Some topics of research that 

warrant further studies are suggested. 

 

Chemistry 

Ferruginol  

Ferruginol (FG) or abieta-8,11,13-trien-12-ol is a tricyclic abietane 

diterpene with a molecular formula of C20H30O and molecular weight 

of 286.5 g/mol.2,5 Characterized by a tricyclic ring system, FG has a 

hydroxyl (−OH) group at C12 and an isopropyl [−CH(CH3)2] group at 

C13 of ring C (Figure 1).  
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Its chemical structure is similar to that of hinokiol, except that hinokiol 

has an −OH group at C3, that is absent in FG.  

Sugiol  

Sugiol (SG) or 12-hydroxyabieta-8,11,13-trien-7-one is another 

tricyclic abietane diterpene with a molecular formula of C20H28O2 and 

molecular weight of 300.4 g/mole.2,5 SG, like FG, has a −OH group at 

C12 and a −CH(CH3)2 group at C13 of ring C (Figure 1). In addition, 

SG has a carbonyl group at C7 of ring B, that is absent in FG. A carbonyl 

group is a functional group comprising of a carbon atom that is double-

bonded to an oxygen atom (C=O). The carbonyl group is trigonal planar 

in shape and improves hydrophilicity. In sugiol, the carbonyl group is 

likely to contribute to the bioactivity of the compound. 

 

Sources and Contents 

Ferruginol 

FG was first isolated by Brandt and Neubauer in 1939 from the resin of 

Podocarpus ferrugineus (Miro), an endemic tree to New Zealand.2,3 

This abietane diterpene has been reported in different plant parts of 31 

species mainly belonging to the families of Cupressaceae (14 species), 

Lamiaceae (6 species), and Podocarpaceae (4 species) (Table 1). Minor 

families are Taxaceae, Meliaceae, Martyniaceae, Pedaliaceae and 

Lauraceae. FG is most often isolated from the bark (10) and root (9) of 

species.    

 

 
Figure 1. Chemical structures of ferruginol (left) and sugiol 

(right). 
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Table 1: Plant sources of ferruginol and sugiol. 
 

No. Compound & species Family Plant part Reference 

 Ferruginol    

1 Amentotaxus formosana Taxaceae Bark 9  

2 Azadirachta indica Meliaceae Root 10  

3 Calocedrus var. formosa Cupressaceae Bark 11  

4 Caryopteris mongholica Lamiaceae Aerial part 12  

5 Chamaecyparis obtusa Cupressaceae Heartwood  13  

6 Craniolaria annua Martyniaceae Root 14  

7 Cryptomeria japonica Cupressaceae Leaf & bark 15  

   Heartwood 16-18  

   Bark 19  

   Leaf 20  

8 Cupressus arizonica Cupressaceae Fruit & branchlet 7  

9 Cupressus sempevirens Cupressaceae Fruit 21  

10 Harpagophytum procumbens Pedaliaceae Root 22  

11 Juniperus excelsa Cupressaceae Aerial part 23  

   Fruit 24  

12 Juniperus phoenicea Cupressaceae Fruit 24  

13 Juniperus procera Cupressaceae Aerial part 25  

   Fruit 24  

   Root 6  

   Leaf 6  

   Seed 6,26  

14 Papuacerdus papuana Cupressaceae Leaf 27  

15 Persea nubigena Lauraceae Wood 28  

16 Podocarpus andina Podocarpaceae Stem bark 28  

17 Podocarpus ferrugineus Podocarpaceae Bark 29  

18 Podocarpus nubigenus Podocarpaceae Wood 30,31  

19 Prumnopitys andina Podocarpaceae Bark 32  

   Stem bark 30,31,33  

   Bark & wood 34,35  

20 Salacia oblonga Celastraceae Leaf & root  36  

21 Salvia hypargeia Lamiaceae Root 37  

22 Salvia lachnocalyx Lamiaceae Root 38  

23 Salvia miltiorrhiza Lamiaceae Root 39,40  

   Cell culture 41,42  

24 Salvia sahendica Lamiaceae Root 43  

25 Salvia staminea Lamiaceae Aerial part 44  

26 Sequoia sempervirens Cupressaceae Cone 45  

27 Taiwania cryptomerioides Cupressaceae Heartwood 46  

28 Tetraclinis articulata Cupressaceae Resin 47  

29 Thuja plicata Cupressaceae Aerial part 48  

31 Thuja standishii Cupressaceae Stem bark 49,50  

31 Torreya nucifera Taxaceae Leaf 51  

 Sugiol    

1 Austrocedrus chilensis Cupressaceae Bark 32  
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2 Calocedrus formosana Cupressaceae Bark 52, 53  

3 Chamaecyparis obtusa Cupressaceae Heartwood  13  

4 Cephalotaxus lanceolata Taxaceae Leaf & twig 54  

5 Cladonia rangiferina Cladoniaceae Aerial part 55  

6 Clerodendrum cyrtophyllum Lamiaceae Stem 56  

7 Cryptomeria japonica Cupressaceae Leaf & bark 15  

   Bark 8,19  

   Heartwood 57  

8 Cunninghamia konishii Cupressaceae Wood 58  

9 Juniperus chinensis Cupressaceae Bark 59  

10 Juniperus polycarpus Cupressaceae Fruit 60  

11 Juniperus procera Cupressaceae Aerial part 25  

   Fruit 24  

12 Metasequoia glyptostroboides Cupressaceae Cone 61-63  

13 Peltodon longipes Lamiaceae Root 40,64  

14 Plectranthus barbatus Lamiaceae Aerial part 65  

15 Podocarpus ferrugineus Podocarpaceae Bark 29  

16 Salvia albocaerulea Lamiaceae Leaf 66  

17 Salvia bowleyana Lamiaceae Root 67  

18 Salvia hypargeia Lamiaceae Root 37  

19 Salvia miltiorrhiza Lamiaceae Root 68  

20 Salvia staminea Lamiaceae Aerial part 44  

21 Sequoia sempervirens Cupressaceae Cone 45,69,70  

22 Taiwania cryptomerioides Cupressaceae Heartwood 46  

23 Taxodium distichum Cupressaceae Bark 71  

24 Tetraclinis articulata Cupressaceae Resin 47  

25 Thuja plicata Cupressaceae Aerial part  48  

26 Thuja standishii Cupressaceae Stem bark 50  

 

The content of FG has been quantified in Juniperus procera 

(Cupressaceae), where the root extract contained a higher amount (4.4 

µg/g), followed by the leaf (0.43 µg/g) and seed (0.42 µg/g).6 In the 

branchlet and leaf of Cupressus arizonica, the content of FG (in relative 

area percent) has been reported to be 10.4% and 5.9%, respectively.7 

FG (76.6% of the total content of compounds in exudates) was the most 

abundant compound in the bark of Cryptomeria japonica.8  

 

Sugiol 

SG has been reported in 26 species mainly of the families Cupressaceae 

(15 species) and Lamiaceae (8 species) (Table 1). Minor families are 

Taxaceae, Cladoniaceae and Podocarpaceae. SG is most often isolated 

from the bark (8) and root (4) of species.    

 

Pharmacological Properties 

Ferruginol  

Pharmacological properties of FG included anti-cancer, anti-protozoal, 

antiviral, antioxidant, gastroprotective, neuroprotective, 

cardioprotective, antibacterial, anti-inflammatory, ulcerative (UC) 

inhibitory, cholesterol inhibitory, cholinesterase (ChE) inhibitory, 

Epstein-Barr virus early antigen (EBV-EA) inhibitory, immunological 

and enzyme inhibitory activities (Table 2). 

Cancer cells susceptible to FG include gastric, prostate, lung, cervical, 

breast and colon cancer cells, together with leukemia and melanoma 

cells (Table 2). Interestingly, two articles on the anti-cancer properties 

of FG were retracted.74,75 An editorial decision was made to retract an 

earlier article on the anti-cancer effects of FG on MDA-T32 thyroid 

cancer cells.75 in March 2021 due to breach of publishing guidelines, 

following the identification of non-original and manipulated figures. 

Almost concurrently, due to anomalies pointed out by an interested 

reader that were later verified by the Editor, an editorial decision was 

made to retract the article on the anti-cancer effects of FG on OVCAR-3 

human ovary cancer cells74 in February 2021.  

 

Sugiol  

The biological and pharmacological significance and mechanisms of 

SG have been reviewed.87 Properties reviewed included anti-cancer, 

antioxidant, anti-inflammatory, antimicrobial, antiviral and 

cardiovascular activities. In Table 3, pharmacological properties of SG 

included anti-cancer, anti-protozoal, enzyme inhibitory, antibacterial, 

anti-inflammatory, anti-fungal, α-glucosidase inhibitory, anti-

tyrosinase, hepatoprotective and antioxidant activities. Cancer cells 

susceptible to SG include prostate, pancreatic, ovarian, lung and 

endometrial cancer cells, together with melanoma cells. Pancreatic 

cancer cells appear to be particular susceptible to SG.40,71,88 

 

Other Studies  

There are no in vivo studies on the pharmacological properties of FG 

and SG, unlike corosolic acid from Lagerstroemia speciosa where its 

anti-diabetic effects are well-studied using diabetic mice.95 Another 

observation is the lack of studies on structure-activity relationships  

(SAR) of FG and SG, unlike acacetin and chrysoeriol where their SAR 

on antioxidant, cytotoxicity towards cancer cells and enzyme inhibitory 

activities have been reported.96  
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Table 2: Pharmacological properties of ferruginol (FG). 
 

Bioactivity Effect and mechanism involved Reference 

Anti-cancer 

 

FG exhibited cytotoxic effects on A549 and CLI-5 lung cancer cells by inducing apoptosis  

via a caspase-dependent mitochondrial apoptotic pathway. In CLI-5 xenograft mice, FG significantly suppressed 

the growth of subcutaneous tumors.  

 

20  

 

 FG induced apoptosis in PC3 prostate cancer cells by activating caspases and AIF, and inhibiting Ras/PI3K and 

STAT3/5 proteins. 

 

28  

 

 FG inhibited the growth of AGS gastric cancer cells with IC50 value of 27 µM.  

 

31  

 FG weakly inhibited the growth of SW620 colon, MDA-MB-231 breast, HCT116 colon,  

NCI-H23 lung and A549 lung cancer cells (GI50 < 50 µg/mL). 

 

45  

 FG inhibited A549 lung cancer cells (GI50 = 31 µM), but not HBL-100 breast, T-47D  

breast, HeLa cervical, SW1573 lung and WiDr colon cancer cells.  

 

47  

 

 Retracted: FG exhibited anticancer effects in OVCAR-3 ovary cancer cells by inducing apoptosis, inhibiting 

cancer cell migration, and inducing G2/M cell cycle arrest. 

  

72  

 Retracted: FG inhibited the growth of MDA-T32 thyroid cancer cells (IC50 = 12 µM) by inducing apoptosis, 

endogenous ROS production, mitochondrial membrane potential loss,  

and suppression of MAPK and PI3K/AKT signaling pathways.  

 

73  

 FG inhibited HeLa cervical cancer, and Jurkat and U937 leukemia cells with IC50 values of 65, 48 and 21 µM, 

respectively. Against Vero normal cells, cytotoxicity was very weak (IC50 = 90 µM). 

 

74  

 FG inhibited the growth of SK-Mel-28 melanoma cells with IC50 values of 85 µM at 24 h and 55 µM at 48 h. 

Induction of apoptosis involved inhibition of caspase-3 activity, p38 phosphorylation and translocation of NF-

κB.   

 

75  

 FG inhibited MCF-7 breast cancer cells with IC50 value of 12 μM by inducing apoptosis, and  

by modulating the expression of inflammatory proteins such as TNF-α, IL-6, NF-κB, iNOS  

and COX-2, and apoptotic proteins such as caspases-3 and -9. 

 

76  

 

 FG inhibited the growth of HCT‑116 colon cancer cells by inducing apoptosis via the mitochondrial‑mediated 

apoptotic pathway, along with the suppression of Bcl‑2, and improvement in caspases‑3 and -9, cytochrome‑c, 

and Bax expressions.  

 

77  

 

Anti-protozoal FG displayed cytotoxic effects against trypomastigotes (IC50 = 52 µM) and epimastigotes  

(IC50 = 90 µM) of Trypanosoma cruzi and against fibroblastic Vero cells (IC50 = 51 µM). 

 

14  

 FG displayed significant in vitro anti-plasmodial activity against chloroquine-resistant (K1)  

and chloroquine-sensitive (D10) strains of Plasmodium falciparum with IC50 values of 0.95  

and 0.63 µg/mL, respectively. Against CHO and HepG2 cells, cytotoxicity was very weak  

(IC50 = 52 and 44 µg/mL), respectively. 

 

22  
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 FG displayed anti-malarial activity against D6 chloroquine-sensitive and W2 chloroquine-resistant strains of P. 

falciparum, with IC50 values of 4.2 and 3.5 µg/mL, respectively.  

 

24  

 FG displayed anti-leishmanial activity against Leishmania donovani with IC50 value of 3.5 µg/mL. 

 

24  

 

 FG inhibited K1 strain of P. falciparum and STIB 900 strain of Trypanosoma brucei rhodesiense. Anti-

plasmodial activity (IC50 = 0.9 µM) was much stronger than anti-trypanosomal activity (IC50 = 12.8 µM). 

 

43  

 

 FG displayed anti-leishmanial activity by inhibiting L. donovani (IC50 = 12 µM), but not  

L. infantum, L. guyanensis and L. amazonensis.  

 

47  

 

 FG inhibited 3D7 chloroquine-sensitive and K1 chloroquine-resistant P. falciparum with  

EC50 values of 2.5 and 1.3 µg/mL, and selective index of 4.6 and 8.6, respectively. 

 

47,78  

 

Antiviral FG inhibited the replication of SARS-CoV 3CLpro (93%) with IC50 value of 49.6 µM. FG  

was the most potent among eight diterpenes tested. 

 

51  

 FG inhibited the replication of SARS-CoV with EC50 value of 1.39 µM. FG was the most potent among five 

diterpenes tested. 

54  

 

 Two FG analogues, but not FG, inhibited HHV-1, HHV-2 and DENV-2.   74  

 

 FG analogues, but not FG, showed anti-Zika virus activity with EC50 values ranging from  

0.67 to 18.6 μM.  

 

79  

 

 FG (12.5 μg/mL) displayed antiviral activity against ZIKV and DENV-2 with 38% and 28% inhibition, 

respectively. There was no activity against HHV-1. 

80  

 

Antioxidant FG displayed promising free radical scavenging ability, comparable to that of BHT, and possessed significantly 

better electron-donating activity than sugiol.  

 

5  

 

 FG exhibited stronger activity than carnosic acid and α-tocopherol for linoleic acid oxidation. Ferruginol had the 

lowest antioxidant activity for DPPH radical scavenging compared to carnosic acid, α-tocopherol and BHT.  

 

81  

 

Gastroprotective FG exerted gastroprotective effects on AGS and MRC-5 cells by increasing PG content, protecting from lipid 

peroxidation, and improving gastric ulcer healing. FG inhibited  

gastric lesions and displayed significant ulcer healing activity in rats.   

   

34  

 FG acted as a gastroprotective agent in rats and mice with ethanol-induced gastric lesions by increasing gastric 

PG content, reducing gastric acid output, improving antioxidant capacity of the gastric mucosa and maintaining 

the gastric GSH level. 

 

82  

 

Neuroprotective FG protected against Aβ oligomers-induced neurodegenerative alterations. Aβ oligomers are recognized as early 

neurotoxic intermediates with a key role in the synaptic dysfunction of AD. 

 

33  

 

 FG prevented the degeneration of dopaminergic neurons by promoting the clearance of α-synuclein, relevant to 

the treatment of PD and other neurodegenerative diseases. 

   

83  

 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/degenerative-disease
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Cardioprotective 

 

FG protected against ISO-induced MI in rats by reducing pro-inflammatory mediators, heart weight, cardiac 

damaged biomarkers, and lipid peroxidation. 

 

84  

 FG displayed cardioprotective effects in mice with DOX-induced cardiotoxicity by restoring MB and FAO via 

the SIRT1–PGC-1α pathway. 

 

85  

Antibacterial 

 

FG inhibited Enterococcus faecalis, Staphylococcus aureus, S. epidermidis, and MRSA  

with MIC values ranging from 6.3 to 12.5 mg/mL. 

 

19  

Anti-inflammatory FG exhibited significant anti-inflammatory activity by inhibiting nitrite production in RAW 264.7 cells with IC50 

value of 28.6 µM. 

 

9  

 FG showed topical anti-inflammatory activity in vivo models of mice with AA (21.0%) and  

or TPA (20.5%). 

 

35  

 

UC inhibitory FG efficiently inhibited DSS-induced UC in mice by ameliorating severe inflammation via inhibition of COX-2, 

MMP-9, and NF-κB signaling. 

 

86  

 

Cholesterol  

inhibitory 

FG displayed significant inhibitory activity on cholesterol absorption (62.5% inhibition at  

20 µg/mL) in mice RAW 264.7 cells, with IC50 value of 9.5 µg/mL. 

 

11  

 

ChE inhibitory FG inhibited AChE (75%) and BChE (88%).  

 

44  

EBV-EA  

inhibitory 

 

FG exerted 100% inhibitory effect on EBV-EA induced by TPA in Raji cells.  50  

 

Immunological FG induced the formation of IL-10-producing regulatory T cells by modulating the function of DC that are 

specialized antigen-presenting cells initiating immunity on encountering antigens associated with infection and 

inflammation. 

 

17  

 

Enzyme inhibitory 

 

FG inhibited butyrylcholinesterase (99%) and elastase (65%).  

 

37  

Abbreviations: AA = arachidonic acid, AChE = acetyl cholinesterase, AD = Alzheimer’s disease, AGS = gastric adenocarcinoma, AIF = apoptosis-

inducing factor, BChE = butyryl cholinesterase, BHT = butylated hydroxytoluene, CAT = cholesterol acyltransferase, ChE = cholinesterase, COX-2 = 

cyclooxygenase-2, DC = dendritic cells, DENV-2 = dengue virus type 2, DOX = doxorubicin, DPPH = 2,2-diphenyl-1-picrylhydrazyl, DSS = dextran 

sulfate sodium, EBV-EA = Epstein-Barr virus early antigen, FAO = fatty acid oxidation, GSH = glutathione, GPase = glycogen phosphorylase, HHV-

1 and HHV-2 = human herpes virus types 1 and 2, IL = interleukin, iNOS = inducible nitric oxide synthase, ISO = isoprenaline hydrochloride, MAPK 

= mitogen-activated protein kinase, MB = mitochondrial biogenesis, MI = myocardial infarction, MIC = minimum inhibitory concentration, MMP-9 = 

matrix metalloproteinases-9, MRSA = methicillin-resistant Staphylococcus aureus, NF-κB = nuclear factor kappa B, PD = Parkinson’s disease, PG = 

prostaglandin, PGC-1α = peroxisome proliferator-activated receptor gamma coactivator-1, PI3K = phosphatidylinositol-3-kinase, ROS = reactive 

oxygen species, SARS-CoV = severe acute respiratory syndrome associated coronavirus, SIRT1 = sirtuin 1, STAT3/5 = signal transducer and activator 

of transcription 3/5, TNF-α = tumor necrosis factor-alpha, TPA = 12-O-tetradecanoylphorbol 13-acetate, UC = ulcerative colitis, and ZIKV = Zika 

virus. 

 

Patents 

Ferruginol 

A patent on FG was filed by N. Inoue, H. Ohinata, T. Matsuzaki, Y. 

Yonei, K. Kitagawa & F. Harada as inventors, with Shokuhin Sangyo 

Co. Ltd. in Tokyo, Japan, as the assignee.97 The Japanese patent 

JPH05294878A was dated November 1993 and entitled, ‘Purification 

of ferruginol.’ This invention enables the high-efficient purification of 

FG without using organic solvent that is undesirable in the food product 

industry. FG from the bark of C. japonica or a crude extract is purified 

using high-pressure supercritical carbon dioxide. Purified FG obtained 

is useful as an antimicrobial or antioxidant agent for food and 

pharmaceutical products. 

Another patent on FG was filed by A. Evans David & U.Y. Nguyen as 

inventors, with Norac Technologies Inc. in New Zealand as the 

assignee.98 The New Zealand patent NZ261825(A) was dated April 

1996 and entitled, ‘Cosmetic composition comprising a phenolic 

diterpene of the ferruginol type.’ The invention entails a skin care 

composition containing an effective amount of a phenolic diterpene 

compound of the FG type. The compound can be dissolved, dispersed 

or encapsulated in cosmetic solutions, lotions, creams and liposomes to 

provide skin care products. Such a composition is effective against the 
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production of peroxides in the skin, resulting from sunlight, heat, 

radiation and the aging process. 

A third patent on FG was filed by M.A. Gonzalez Cardenete & L.A. 

Betancur Galvis as inventors, with University of Antioquia and 

University of Valencia in Spain as assignees.99 The Spanish patent 

ES2586505B1 was dated July 2017 and entitled, ‘Ferruginol analogues 

as antiviral agents.’ The invention relates to antiviral compounds 

derived from abietane diterpenes, specifically ferruginol analogues, for 

use against dengue virus serotypes (DENV1-4), and human herpes 

viruses type 1 (HHV-1) and type 2 (HHV-2). 

Sugiol 

A patent on SG was filed by T. Hattori, T. Katagiri, A. Kanamaru & T. 

Kato as inventors, and Pola Chemical Industries Inc. in Japan as the 

assignee.100 The Japanese patent JPH11139931A was dated May 1999 

and entitled, ‘Preparation for external use for skin whitening.’ The 

invention entails a method for preparation of a topical formulation for 

use as skin whitening and/or preventing/ameliorating skin 

pigmentation, after exposure to the sun. This formulation contains an 

effective amount of SG.  

 

Table 3: Pharmacological properties of sugiol (SG). 
 

Bioactivity  Effect and mechanism involved Reference 

Anti-cancer 

 

SG weakly inhibited the growth of SW620 colon, MDA-MB-231 breast, HCT116 colon, NCI-H23 

lung, and A549 lung cancer cells (GI50 < 50 µg/mL). 

 

45  

 SG inhibited the growth of DU145 prostate cancer cells via inactivation of JAK2/ STAT3 pathway 

 

69  

 SG inhibited MIA PaCa-2 pancreatic cancer cells and MV-3 melanoma cells with IC50 values of 17.9 

and 34.1 µM, respectively.  

 

40  

 SG moderately inhibited A549 lung cancer cells (GI50 = 80 µM), but not HBL-100 breast, T-47D breast, 

HeLa cervical, SW1573 lung and WiDr colon cancer cells.  

 

47  

 

 SG inhibited DU145 prostate cancer cells by suppressing STAT3 activity via the regulation of 

transketolase and ROS-mediated ERK activation.   

 

70  

 

 SG was cytotoxic to MIA PaCa-2 pancreatic cancer cells (IC50 = 15 µM), and inhibited their growth 

by inducing apoptosis, G2/M cell cycle arrest, and ROS production, and by inhibiting cell migration. 

 

88  

 

 SG strongly inhibited PANC-1 pancreatic cancer cells (cultured under glucose-starved conditions) 

with EC50 value of 9.0 µM. Against NHDF cells, cytotoxicity of SG was very weak with EC50 value of 

68 µM. 

 

71  

 SG inhibited SKOV3 ovarian cancer cells with IC50 value of 25 µM. Mechanisms included apoptosis, 

cell cycle arrest, and blocking of the RAF/MEK /ERK signaling pathway. 

 

89  

 

 

 SG suppressed the growth, migration, and invasion of human endometrial cancer cells via the 

induction of apoptosis and autophagy. Against HEC-1-A, HEC-1-B and KLE, the IC50 values of SG 

were 14, 14 and 16 μM, respectively. 

 

90  

 

 

Anti-protozoal SG exhibited antimalarial activity against D6 and W2 strains of P. falciparum with IC50 values of 472 

and 409 ng/mL, respectively. 

 

60  

 SG displayed antimalarial activity against D6 chloroquine-sensitive strain (IC50 value of 3.0 µg/mL) but 

not W2 chloroquine-resistant strain of P. falciparum.  

 

24  

 

 SG displayed inhibitory activity against Leishmania infantum promastigotes and amastigotes at 48 h 

with IC50 values of 5.5 and 5.7 µg/mL, respectively.  

 

91  
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 SG did not display inhibitory activity against all four Leishmania species tested, namely, L. donovani, 

L. infantum, L. guyanensis and L. amazonensis. 

 

47  

 

Enzyme inhibitory SG strongly inhibited XO activity with IC50 value of 6.8 µM. 

 

92  

 SG inhibited GPase with IC50 value of 12.7 µM. 

 

21  

 

 SG inhibited topo I with IC50 value of 2.8 µM. 64  

 

 SG exerted 100% inhibitory effect on EBV-EA induced by TPA in Raji cells.  50  

 

Antibacterial 

 

SG possessed antibacterial activity with MIC values of 40 and 50 µg/mL against Bacillus subtilis and 

S. aureus, respectively.  

 

66  

 

 SG possessed antibacterial activity against MRSA with diameter of inhibition zone of 20 mm at 100 

mg/disc. No activity was observed against VRE. 

 

55  

 SG displayed antibacterial activity against food-borne pathogens with diameters of inhibition zone of 

10−16 mm at 50 µg/disc. 

 

62  

Anti-inflammatory SG inhibited LPS-induced TNF-α and IL-1β expression as well as ROS and MAPKs activation in 

macrophages. 

 

52  

 SG significantly inhibited COX-2 activity with IC50 value of 5 µg/mL. 

 

58  

 

Anti-fungal Sugiol at 100 μg/disc displayed anti-fungal effect against Candida albicans, C. glabrata, C. tropicalis, 

C. parapsilosis and C. guilliermondii at diameters of zone of inhibition ranging from 8−13 mm. 

 

63  

 

α-Glucosidase inhibitory  SG inhibited α-glucosidase at values ranging from 12.3−63.5%, suggesting its anti-diabetic potential.   93  

 

Anti-tyrosinase SG inhibited tyrosinase at values ranging from 28.2−67.4%, suggesting its anti-melanogenesis 

potential.    

 

93  

Hepatoprotective 

 

SG was effective in reducing elevated liver enzymes as indication of hepatoprotection. The reduction 

of SGOT, SGPT, ALP and TB was 32.6%, 60.3%, 37.4% and 36.8%, respectively. 

 

25  

Antioxidant  SG significantly scavenged DPPH, nitric oxide, superoxide and hydroxyl free radicals by 79%, 72%, 

73% and 85%.  

 

94  

 

Abbreviations: A-G = alpha-glucosidase, ALP = alkaline phosphatase, AR = aldose reductase, COX-2 = cyclooxygenase-2, DPPH = 2,2-diphenyl-1-

picrylhydrazyl, EBV-EA = Epstein-Barr virus early antigen, ERK = extracellular signal-regulated protein kinase, GPase = glycogen phosphorylase, IL 

= interleukin, JAK2 = Janus kinase 2, LPS = lipopolysaccharide, MAPKs = mitogen-activated protein kinases, MEK = MAPK/ERK kinase, MIC = 

minimum inhibitory concentration, MRSA = methicillin-resistant Staphylococcus aureus, NHDF = normal human dermal fibroblast, RAF = rapidly 

accelerated fibrosarcoma, ROS = reactive oxygen species, SGOT = serum glutamate oxaloacetate transaminase, SGPT = serum glutamate pyruvate 

transaminase, STAT3 = signal transducer and activator of transcription 3, TB = total bilirubin, TNF = tumor necrosis factor, Topo I = topoisomerase I, 

TPA = 12-O-tetradecanoylphorbol 13-acetate, VRE = vancomycin-resistant Enterococci, and XO = xanthine oxidase. 

 

Conclusion 

This article presents an overview of the chemical structures, sources, 

contents, pharmacological properties and patents of FG and SG isolated 

from nature. They are tricyclic abietane diterpenes that are commonly 

isolated from plant species of the families Cupressaceae and Lamiaceae. 

Currently, FG and SG are not commercially available and studies on 

these two compounds would require their isolation from plant species 
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such as C. japonica and J. procera. Lacking are in vivo studies on the 

pharmacological properties using animal models, structure-activity 

relationships, clinical trials and safety evaluation of FG and SG. Their 

chemopreventive efficacy when used alone or in combination with other 

chemotherapy agents, their ability to reverse multi-drug resistance in 

cancer cells, and their structural modifications to synthesis novel 

derivatives or analogues with enhanced anti-cancer properties are worth 

exploring. Finally, bioavailability, pharmacokinetics, 

biotransformation, dose-response, synergism and side-effects of FG and 

SG are warranted.  
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