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Introduction 

The coronavirus disease of 2019 (COVID-19) is a new 

global public health hazard. The SARS-CoV-2 is responsible for this 

pandemic called Covid-19. SARS-CoV-2 has currently resulted in 

around 16.6 million deaths worldwide, with over 760.2 million 

confirmed cases, posing a major concern to public health.
1 

Till date, 

there are no clinically authorized vaccinations or medical treatments 

for COVID-19.  Natural sources are increasingly being considered as a 

potential source of new lead compounds for the treatment of COVID-

19. I. trichantha is a species of Icacinaceae found in Central and West 

Africa. It is a medicinal shrub used by people in Nigeria. I. trichantha 

can grow up to two meters in height.
2
 Carbohydrates (primarily 

starch), proteins, lipids, and mineral components like sodium, 

potassium, and calcium were found in I. trichantha.
3
 In recent years, 

research on this plant has shown several remarkable pharmacological 

and chemical capabilities, suggesting some practical use for the plant 

material and compounds.
2
 This plant’s leaves and tubers are said to be 

aphrodisiacs.
4
The leaves and seeds are used for the management of 

asthma and hypertension when grounded and macerated in local 

alcoholic beverages.
5
 Traditional herbal medicine vendors utilize 

tubers to treat rheumatism, malaria, constipation, poisoning, and 

toothache.
6
 Mumps can be cured by drinking the tuber juice.

7
The first 

pharmacological report on I.trichantha was reported in 1990 (Asuzu 

and Ugwueze, 1990).
8
  An aqueous extract of I.trichantha tubers 

influenced loss of the righting reflex caused by pentobarbital in mice, 

according to Asuzu and colleagues.
8
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The activity of the extracts on the CNS was demonstrated by 

extending pentobarbitone sleeping time in rats, causing local 

anaesthetic outcomes in guinea pigs, and protecting rats and mice 

from pentylenetetrazole poisoning.
9
When mice were given a 51% 

methanol extract of the plant’s leaves after being pretreated with 

pentylenetetrazole, the extract reduced convulsions and increased 

pentobarbitone-induced sleep time.
2
 The emetic effect of the methanol 

extract was ascribed to the increased number of retches in guinea pigs, 

and this extract also ledtothe histological growth of the liver and 

kidney impacted by tetrachloromethane.
2
  An ethyl ethanoate extract 

of the leaf component was found to protect rats’ livers from 

paracetamol-induced liver damage.
10

Similarly, a methanol extract of I. 

trichanthaleaf was discovered to have hepatoprotective effects against 

arsenic poisoning in rats, as the extract reduced the enzyme activities 

of aspartate aminotransferase (AST),-glutamyltransferase serum 

alanine, and aminotransferase.
11

 Furthermore, it was discovered that 

the amount of micronucleatedpolychromatophilic red blood cells 

obtained from the bone marrow smear of Icacina-treated rats was 

lower than that of untreated arsenic-poisoned controls.
11

 The 2,2-

diphenyl-picryl-hydroxyl radical analysis revealed that the vegetative 

parts of I. trichantha had average levels of antioxidant activity.
10,12

 

The antioxidant activity of the leaf was proportional to total phenol 

content
13

and n-hexane extract was found to be effective in three nearly 

identical studies.
14

 The first microorganisms employed to demonstrate 

the in vitro antibacterial activity of I. trichantha leaf were 

Pseudomonas aeruginosa and Escherichia coli.
15

 

GC-MS is a technique that has been utilized by several researchers to 

identify phytocompounds in plants.
16-26 

However, I. trichantha tubers 

have not been fully explored. There is very little research on the 

structures of the bioactive chemicals found in the tubers of I. 

trichantha. Additionally, GC-MS data on I.trichantha tubers and the 

bioactive phytocompounds’ molecular docking investigations are 

unknown till date. To the best of our knowledge, this is the first 

evaluation of I. trichantha tuber using gas chromatography-mass 

spectrometry analysis, in silico molecular docking, drug-likeness, 

toxicity and prediction of substance activity spectra (PASS). As a 

ART ICLE  INFO  ABSTRACT 

Article history: 

Received  12July 2022 

Revised  08August 2022 

Accepted  19August 2022 

Published online  02 September 2022 

The COVID-19 pandemic, caused by the SARS-CoV-2, has prompted international concern. 

This research aims to find bioactive phytocompounds from the traditional herb Icacina 

trichantha (Oliv) that could be used  as a possible SARS-CoV-2 nonstructural protein inhibitor. 

GC-MS analysis identified fifteen (15) phytocompounds. In silico molecular docking, drug-

likeness, toxicity and prediction of these compounds’ substance activity spectra (PASS) were 

evaluated.  The phytocompounds all have good binding energies, according to molecular 

docking. The phytocompound, 9,12-octadecanoic acid gave the best binding affinity of -24.98 

kcal/mole. All of the identified compounds conformed to Lipinski’s Rule of Five (RO5). This 

showed that the identified I. trichantha (Oliv) compounds would have lower attrition rates 

during clinical trials and thus have a better chance of being marketed. The current findings 

suggest that the discovered phytocompounds of I. trichantha (Oliv) could be developed as a 

novel COVID-19 medication. 

 

Keywords: Docking,GC-MS,Icacinatrichantha Oliv, SARS-CoV-2, Tubers. 
 

Copyright: © 2022 Otuokere et al. This is an open-
access article distributed under the terms of the 

Creative Commons Attribution License, which 

permits unrestricted use, distribution, and 
reproduction in any medium, provided the original 

author and source are credited. 

 

Official Journal of Natural Product Research Group, Faculty of Pharmacy,  

University of Benin, Benin City, Nigeria. 

 

https://www.tjnpr.org/
https://www.sciencedirect.com/science/article/abs/pii/S2405830021000240#!
mailto:ifeanyiotuokere@gmail.com
https://www.sciencedirect.com/science/article/abs/pii/S2405830021000240#!
http://www.doi.org/10.26538/tjnpr/v1i4.5
https://creativecommons.org/licenses/by/4.0/


                                                   Trop J Nat Prod Res, August 2022; 6(8):1336-1342                ISSN 2616-0684 (Print) 

                                                                                                                                                               ISSN 2616-0692 (Electronic)  
 

1337 
 © 2022 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License  

result, the goal of this research is to use GC-MS and molecular 

docking to find potential SARS-CoV-2 nonstructural protein inhibitors 

from I.trichantha tubers 

 

Materials and Methods    

Sample collection and extraction 

Fresh tubers of I. trichantha were harvested at Umunakwukwu 

Chokoneze Mbaise, Imo state on February, 2017. The plant was 

identified and assigned a herbarium number ICA DALZ 1094 by the 

Taxonomy section of the Michael Okpara University of Agriculture, 

Umudike (MOUAU) Forestry Department. After washing the tubers to 

remove grit, they were peeled and grated. The grated tuber after four 

weeks of air drying was weighed (1.2 kg). It was macerated in 

chloroform for 2 days, then decanted, filtered using Whatman No.1 

filter paper, and concentrated with a rotary evaporator under lower 

pressure to get 9 g of extract. 

 

GC-MS analysis 

The test was carried out on a 7890A GC-MS Triple Quad instrument 

(Agilent Technologies, Santa Clara, USA). Chemically coupled with a 

5% diphenyl, 95% dimethylpolysiloxane cross-linked stationary phase 

(0.25 mm film thickness), an HP-5MS 30 m–250 mm (i.d.) fused-

silica capillary column (Agilent J&W Scientific, Folsom, CA, USA) 

was employed. Exactly 1.5 μL of the sample was manually inserted in 

the split less mode, Helium was used as a carrier gas at 1.0 mL/min in 

split mode. The injector and supply were both at 250°C. The oven’s 

temperature was initially set at 40°C, and then gradually raised to 

300°C at a rate of 10°C/min per minute, for a total of 60 minutes. The 

temperature was set to 305°C after the run and stayed for 1 minute. 

The mass spectrometer was operated in EI mode (70 eV). Data was 

collected in full scan mode with a scan time of 0.5 seconds from m/z 

50 to 650. Agilent Mass Hunter Qualitative Analysis was used to 

evaluate the data (Version B.04.00). By comparing the average peak 

area of each component to the total areas, the relative percentage 

amounts of each component were computed. 
 

Identification of phytochemical components of the GC-MS 

The compounds from the GC-MS spectra were identified by 

comparing mass spectral data and retention indices with the Wiley 

Registry of Mass Spectral Data 8th edition and the NIST Mass 

Spectral Library, and compounds were identified. Calculation of 

retention indices (RI) relative to a homologous sequence of n-alkanes 

under identical experimental conditions, as well as comparison with 

the literature, further verified the identification. 

 

Preparation of SARS-CoV-2 viral protein and identified compounds 

SARS-CoV-2 Nonstructural protein 1 (NSP1) (PDB ID: 7K3N) was 

obtained from the RCSB Protein Databank. Water molecules and ions 

were removed, and polar hydrogens were added using ArgusLab 4.0.1 

software.
27

ACD lab ChemSketch software
 

was used to draw the 

structures of the identified compounds. Energy minimization was done 

using ArgusLab 4.0.1 software.
27 

ArgusLab 4.0.1 software 
27

was used 

to convert the structures of the identified compounds to PDB format. 

 

Molecular docking study 

The identified compounds were docked to the SARS-CoV-2 

Nonstructural protein 1 using the PatchDock server, a molecular 

docking tool based on shape complementarily principles. 
28

 The 

compounds were free to explore the whole surface area of the target 

protein on the PatchDock server (blind docking). The compound and 

protein's PDB files were uploaded to the PatchDock site for docking 

analysis, with a cluster RMSD value of 1.5 and a protein-small ligand 

complex type as the analysis settings. Patchdock server findings were 

fine-tuned with the Firedock server.
29

The bond lengths, interactions 

and 3D interaction of all docked complexes were visualized using the 

protein-ligand interaction profiler (PLIP) Server.
30

 We also docked 

oleic acid with its original target protein, bovine beta-lactoglobulin 

(4DQ3), as a control, to validate the docking protocol in this work. 

 

 

Drug-likeness prediction study 

Using Lipinski's RO5,
31

 the drug-likeness parameters of the 

phytocompounds were assessed using the web server of Swiss 

ADME.
32

 

 

In Silico toxicity prediction study 

ProTox-II was used to predict the toxicity and lethal dose (LD50) for 

the identified chemicals.
33

 

 

In Silico prediction of substance activity spectra (PASS) study 

The potential bioactivities of docked compounds were assessed using 

the internet program Prediction of Substance Activity Spectra (PASS). 
34

 

 

Results and Discussion 

GC-MS analysis 

The GC–MS chromatogram of chloroform extract from I. trichantha 

tubers revealed a total of 15 peaks corresponding to bioactive 

compounds. Figure 1 depicts the GC chromatogram. The compounds 

have been listed in Table 1. Structures of compounds isolated from 

GC-MS of I. trichantha tubers are presented in Figure 2. 

 

Molecular docking studies 

SARS-nonstructural CoV-2's protein 1 (NSP1) was docked with all 

the phytocompounds. The global energies of the docked compounds 

from I. trichantha tubers with SARS-CoV-2 are listed in Table 2. The 

3D interactions of the five best-docked compounds are shown in 

Figure 3. 

Protein-ligand interaction of oleic acid with NSP1 of SARS-CoV-2 

(Figure 3a) showed the involvement of hydrophobic interactions, 

water bridges and salt bridges. Hydrophobic interactions were 

observed with protein residues GLN 6A (3.41 Å), TYR 109A (2.92 Å) 

and TYR 109A (3.71 Å). Water Bridge was observed with protein 

residue GLY 103A (2.73 Å). Salt Bridge was observed with protein 

residue HIS 101A (5.30 Å).The global energy value was -17.28 

Kcal/mol. The interaction of 9,12-Octadecanoic acid with NSP1 of 

SARS-CoV-2 (Figure 3b) showed the involvement of hydrophobic 

interactions and hydrogen bonds. Hydrophobic interactions were 

observed with protein residues LEU 7A (2.94 Å), PRO 10A (3.41 Å) 

and TYR 109A (2.81 Å). Hydrogen bond occurred with protein 

residue VAL 5A with a bond distance of 2.48 Å. The global energy 

value was -24.98 Kcal/mol. The interaction of methyl stearate with 

NSP1 of SARS-CoV-2 (Figure 3c)showed the involvement of 

hydrophobic interactions. 

 
Figure 1: GC chromatogram of chloroform extract of I. 

trichantha tubers   
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Table 1: Identified compounds in the GC-MS of I. trichantha Tubers 
 

S/No Compound Mol. Weight 

(g/mol) 

Retention Time Composition 

(%) 

1 Humulene 204.35 6.579 0.98 

2 Oleic acid 282.46 6.790 0.88 

3 1-Nitro-bicyclo[6.1.0]nonan-2-one 183.20 7.460 2.27 

4 9-Heptadecanone 254.45 7.717 1.30 

5 9,12-Octadecanoic acid 280.45 7.797 0.93 

6 Hexadecanoic acid, methyl ester 270.45 7.843 6.11 

7 Hexadecanoic acid, methyl ester 270.45 7.952 6.85 

8 Methyl (E)-octadec-9-enoate 296.49 8.295 27.92 

9 Methyl stearate 298.50 8.341 3.26 

10 cis-Vaccenic acid 282.46 8.415 34.75 

11 Octadecenoic acid 282.46 8.455 8.13 

12 Oleic acid 282.46 8.507 2.34 

13 Acetic acid,(2,4-dichlorophenoxy), 

isooctyl ester 

333.25 8.598 0.83 

14 Bis(2-ethylhexyl)phthalate 390.56 9.468 0.82 

15 9-Octadecenoic acid(Z), 2-hydroxyethyl  

ester 

326.51 10.069 0.81 
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Figure 2: Structures of compounds isolated from GC-MS of I. trichantha tubers 
 

 

 

Hydrophobic interactions were observed with protein residues TYR 

88A (3.24 Å), TYR 88A (3.74 Å), and ARG 115A (3.13 Å). The 

global energy value was -16.37 Kcal/mol. Protein-ligand interaction of 

Bis(2-ethylhexyl)phthalate with NSP1 of SARS-CoV-2 (Figure3d) 

showed the involvement of hydrophobic interaction and hydrogen 

bond. Hydrophobic interactions were observed with protein residues 

ARG 64A (3.17 Å), ARG 90A  (2.96 Å), ARG 90A  (3.63 Å), and 

GLU 93A (3.46 Å). Salt bridge was observed with protein residue 

ARG 90A (4.63 Å). The global energy value was -18.99 Kcal/mol. 

Protein-ligand interaction of 9-Octadecenoic acid(Z), 2-hydroxyethyl 

ester with NSP1 of SARS-CoV-2 (Figure3e) showed the involvement 

of hydrophobic interaction and hydrogen bond. Hydrophobic 

interaction was observed with protein residues GLU 93A (2.98 Å). A 

hydrogen bond was observed with protein residue GLU 93A (3.53 Å). 

The global energy value was -16.91 Kcal/mol. Results of the docking 

score suggested that I. trichantha contained lead compounds that can 

be a potential drug candidate against SARS-CoV-2. 

Table 3 shows the drug-likeness property predictions for the 

phytocompounds. The RO5 is a thumb’s rule developed by Lipinski 

for determining whether a compound with a particular bioactivity has 

physical and chemical characteristics that are expected to be an orally 

active medication. Table 3 showed that the five best-docked 

compounds meet the requirements of RO5. This showed that the 

identified I. trichantha compounds will have a low attrition rate for 

further studies in the drug development process. 

 

Toxicity prediction 

Toxicity prediction of phytocompounds by ProTox-II is shown in 

Table 4.The compound, 9,12-Octadecanoic acid was anticipated to be 

non-lethal (LD50> 5000 mg/kg) in this investigation. Toxicity 

predictions revealed that methyl stearate and 9-octadecenoic acid (Z), 

2-hydroxyethyl ester could be harmful if taken (2000 < LD50  5000). 

The predicted toxicity result suggested that 9,12-Octadecanoic acid is 

safe for consumption. 

 

Biological activity prediction 

Predictions of bioactivity of the five best-docked compounds are 

shown in Table 5.  Prediction of PASS, a structure-based bioactivity 

prediction online tool, was used to evaluate the five best-docked 

compounds' potential biological activity. The PASS analysis identified  

each compound's potential targets and biological activity. Based on 

(Pa) Possibility of activity > (Pi) Possibility of inactivity and Pa > 0.7 

values. We studied the biological activity for each molecule. With Pa 

>0.951, the results showed various major actions, implying that the 

identified compounds of I. trichantha tubers had a broader potential 

(Table 5). 

 

 

Table 2: Global energies of phytochemical from I. trichantha 

tubers with SARS-CoV-2 
 

S/No Compound Global energies  

(kcal/mol) 

1 Humulene -11.32 

2 Octadecenoic acid -17.28 

3 1-Nitro-bicyclo[6.1.0]nonan-2-one -10.24 

4 9-Heptadecanone -11.20 

5 9,12-Octadecanoic acid -24.98 

6 Hexadecanoic acid, methyl ester -13.82 

7 Hexadecanoic acid, methyl ester -13.82 

8 Methy (E)-octadec-9-enoate -10.50 

9 Methyl stearate -16.37 

10 cis-Vaccenic acid -11.70 

11 Octadecenoic acid -12.28 

12 Octadecenoic acid -12.28 

13 Acetic acid,(2,4-dichlorophenoxy), 

isooctyl ester 

-10.19 

14 Bis(2-ethylhexyl)phthalate -18.99 

15 9-Octadecenoic acid(Z), 2-

hydroxyethyl  ester 

-16.91 
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Figure 3: The bioactive compounds from I. trichantha (oliv) tubers docked with SARS-CoV-2. a) Octadecenoic acid   b) 9,12-

Octadecanoic acid c) Methyl stearate  d) Bis(2-ethylhexyl)phthalate    d) 9-Octadecenoic acid(Z), 2-hydroxyethyl  ester 
 

Table 3: Drug-likeness property prediction for the five best-docked compounds. 
 

Compound Mol. Weight 
1
(g/mol) 

HB Acceptor 
2
 HB Donor 

3
 Lipophilicity

4
 Molecular 

Refractivity 
5
 

Rule of 

Five 
6
 

Octadecenoic acid 282.46 2 1 6.11 89.94 1 

9,12-Octadecanoic acid 280.45 2 1 5.88 89.46 1 

Methyl stearate 298.50 2 0 6.42 94.73 1 

Bis(2-ethylhexyl)phthalate 390.56 4 0 6.43 116.3 1 

9-Octadecenoic acid(Z), 2-

hydroxyethyl  ester 

326.51 3 1 5.56 100.23 1 

1
Molecular weight (acceptable range: <500). 

2
 HB, Hydrogen bond acceptor (acceptable range:  10). 

3
 HB, Hydrogen bond donor 

(acceptable range:  5). 
4
Lipophilicity (Log Po/w, acceptable bounds <5). 

5
 Molar refractivity, acceptable bounds 40 - 130.

6
 RO5: 

Number of RO5 violations ideal range: 0–4. 

 

Table 4: Toxicity prediction of the five best-docked compoundsProTox-II. 
 

Compound Predicted LD50, 

mg/kg 
a
 

Predicted Toxicity 

Class 
a
 

Octadecenoic acid 48 2 

9,12-Octadecanoic acid 10000 6 

Methyl stearate 5000 5 

Bis(2-ethylhexyl)phthalate 1340 4 

9-Octadecenoic acid(Z), 2-hydroxyethyl  

ester 

5000 5 

 

 

 

E 

A 

C 

D 

B 

a
ProTox (http://tox.charite.de/protox_II, accessed on 7 March,  2022) 

Class 1: deadly if consumed (LD50 5); Class 2: deadly if consumed 

(5 < LD50  50); Class 3: lethal if consumed (50 < LD50  300); Class 

4: harmful if consumed (300 < LD50 2000); Class 5: maybe harmful 

if consumed (2000 < LD50  5000); Class 6: non-lethal (LD50> 5000) 
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Table 5:Prediction of bioactivity of the five best-docked compounds 
 

Compound Pa 
a
 Pi 

b
 Biological activity 

Oleic acid 0.974 0.001 CYP2J substrate 

9,12-Octadecanoic acid 0.951 0.001 Phosphatidylglycerophosphatase inhibitor 

Methyl stearate 0.962 0.002 Saccharopepsin inhibitor 

Bis(2-ethylhexyl)phthalate 0.966 0.002 Eye irritation, inactive 

9-Octadecenoic acid(Z), 2-

hydroxyethyl  ester 

0.971 0.002 Eye irritation, inactive 

 

Conclusion  

GC-MS study of the tubers of I. trichantha demonstrated that this 

plant is a rich source of bioactive phytocompounds. Docking tests 

revealed excellent binding affinity to the NSP1 SARS-CoV-2. Drug-

likeness conformed to RO5. The results of the molecular docking 

revealed that I. trichantha would be a promising natural antiviral 

candidate against SARS-CoV-2. However, more research is needed to 

isolate the pure chemical responsible for the identified bioactivity, as 

well as to determine its toxicity profile and long-term safety. 
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