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Introduction  

           Malaria disease caused by pathogenic protozoa from the 
Plasmodium falciparum type is deadly because it can cause brain, lung, 
and kidney damage. This problem is becoming increasingly critical 
with drug and multidrug resistance, contributing to high morbidity and 
mortality rates.1–3 Many medicinal plants such as Moringa oleifera 
leaves, Citrullus colocynthis, Buxus hyrcana, Physalis alkekengi, 
Glycyrrhiza glabra, Ferula oopoda, Kigelia africana, and Nauclea 

latifolia have been studied as an alternative to the antimalarial drug.4–7 

Essential oil-producing plants also attract attention because they 
contain major compounds that can be used as building blocks for drug 
synthesis.8–10 One of the primary compounds in essential oil-producing 
plants is methyl eugenol. Methyl eugenol (ME) has been known as a 
compound with various bioactivities, including an active compound 
against Aedes aegypti larvae, anticonvulsants, and anesthetics.11–17 
Methyl eugenol can be obtained from the isolation of Boesenbergia 

pulcherrima, Ocimum basilicum, Magnolia salicifolia, Lycium 

minutifolium, and Hedyosmum racemosum (Ruiz & Pav.) G., Brazilian 

red propolis, Pimenta pseudo caryophyllous, and Marrubium vulgare 

plants.13,18–24 Methyl eugenol can also be obtained through eugenol 
compound methylation. Many methyl eugenol conversions from 
eugenol have been reported.25,26  
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Eugenol is found abundantly in aromatic plants as an essential oil.27–31 
Eugenol is also potentially resourced from lignin degradation.32,33 
Methyl eugenol synthesized in the laboratory from natural eugenol 
extracts is often referred to as semisynthetic methyl eugenol. The 
molecular structure of methyl eugenol consists of three functional 
groups: the aromatic, methoxy and allyl terminal. The allyl-methyl 
eugenol is predicted to be convertible to methyl eugenol 
thiosemicarbazide. The synthesis goes through the intermediate 
formation of methyl eugenol isothiocyanate. There have been reports 
on producing some thiosemicarbazide compounds from isothiocyanate 
compounds.34,35 Natural and synthetic isothiocyanates have 
bioactivities. For example, allyl isothiocyanate has antimicrobial 
properties, and benzyl isothiocyanate has been tested for herbal dental 
care.36,37 Phenetyl isothiocyanate has anti-cytotoxic and antibacterial 
potentials.38,39 In addition, propyl isothiocyanate compounds have also 
been observed to induce apoptosis in gastric cancer cells.40 However, 
synthesis and analysis of methyl eugenol isothiocyanate for 
antimalarials were under-investigated and imperative to study. The 
selection of methyl eugenol thiosemicarbazide for the synthesis target 
compound in this research was because studies have reported that 
several thiosemicarbazides have various bioactivities. For example, 
Schiff base 4˗ethy˗1˗(pyridin˗2˗yl)thiosemicarbazide (HEPTS) has 
been examined as an anti-tumor and thiosemicarbazide-chitosan for 
antibacterial.41,42 A comparison of the inhibitory activities of noscapine 
derivatives showed that the noscapine thiosemicarbazide had better 
antiplasmodial activity and selectivity than the noscapine 
isothiocyanate.43 Isothiocyanate and thiosemicarbazide compounds 
contain nitrogen and sulfur atoms. Compounds containing nitrogen and 
sulfur atoms play an essential role in many bioactivities.34  
Preliminary research on methyl eugenol isothiocyanate by in silico 
approach has shown that methyl eugenol isothiocyanate is a potential 
Plasmodium falciparum inhibitor. It will have better properties if it has 
additional active groups.4 Although the derivatization of methyl 
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Multidrug treatment has been piloted for Plasmodium falciparum malaria infection; however, 
multidrug resistance requires serious attention. Therefore, new antimalarial studies have been 
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two compounds derived from methyl eugenol, namely (1) isothiocyanates-based methyl eugenol 
and (2) thiosemicarbazide-based methyl eugenol. The synthesized compounds were 
characterized using FTIR, LCMS-MS, dissolution test, XRD, and SEM. The synthesized 
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drug-likeness. Compound (1) was synthesized using methyl eugenol and thiocyanic acid at room 
temperature for 24 hours. The orange-coloured powder obtained contains dimer methyl eugenol 
isothiocyanate with a specific isothiocyanate wavenumber at 2055 cm-1 and molecular mass m/z 
416. Compound (2) was synthesized using compound (1) and hydrazine for 10 hours. The 
specific wavenumber of (2) was identified at 1648 cm-1 (amine-free) and molecular mass of m/z 
804. Compounds (1) and (2) have crystallite sizes of 5.38141 nm and 3.85276 nm, respectively. 
In vitro Plasmodium falciparum analysis resulted in IC50 of 0.34 µg/mL for (1) and 1.47 µg/mL 
for (2). Molecular docking analysis showed that (1) and (2) had binding energies of -6.0 
kcal/mol and -1.2 kcal/mol. Compounds (1) and (2) had character deviations of drug-likeness. 
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considering the in vitro antimalarial potentials in the two synthetic products.  
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eugenol with thiocyanic acid and hydrazine tends to produce polymers, 
the potential of methyl eugenol derivative polymers for in vitro 
antimalarials is yet unidentified. To gather evidence on methyl eugenol 
derivative's potential against Plasmodium falciparum, the conversion of 
methyl eugenol to (1) methyl eugenol isothiocyanate and (2) methyl 
eugenol thiosemicarbazide, studies on the characterization product 
obtained, in vitro antimalarial assay and in silico analysis were 
conducted. 
 

Materials and Methods 

Materials 

The materials of this study were methyl eugenol (99,0%), dimethyl 

sulfoxide (DMSO), potassium hydrogen sulfate, potassium thiocyanate, 
chloroform, ethyl acetate, diethyl ether, n-hexane, hydrazine 
monohydrate, methanol, ethanol, potassium bromide, aquadest, and 
TLC plate Silica gel 60 F254. All chemicals used were pro-analysis 
grade. The methyl eugenol used was synthesized by PT Indesso. This 
methyl eugenol was synthesized from purified eugenol extracts derived 
from Eugenia caryophyllata. The clove flower bud and the methyl 
eugenol structure are illustrated in Figures 1a and 1b.  
 

Synthesis and analysis of the compound (1) 

Batista's (2019) and Silva's (1994) procedures were modified to 
synthesize isothiocyanate-based methyl eugenol (compound 1).44,45  
The orange-coloured powder obtained was dried from chloroform by 
using Nitrogen gas flow. The product was examined using Thin Layer 
Chromatography (TLC) using hexane-ethyl acetate (1:1, v/v) as the 
mobile phase. The product was also analyzed using dissolution test, 
Fourier Transform Infrared (FTIR), LCMS-MS (Liquid 
Chromatography Mass Spectrometry–Mass Spectrometry), SEM 
(Scanning electron microscope), XRD (X-Ray diffraction), and 3D7 
Plasmodium falciparum malaria test. 
 
Synthesis and analysis of the compound (2)  

Thiosemicarbazide-based methyl eugenol (compound 2) was 
synthesized by using modified Yamaguchi's (2009) and Rodrigues 
(2018) methods.46,47 Compound (1) was dissolved in 25 mL ethanol, to 
which hydrazine was added. The reaction occurred under the control of 
nitrogen gas flow, constant stirring, and a reaction temperature of 70°C. 
The yellow solid product was vacuum filtrated and weighed.  
The influences of hydrazine monohydrate concentration (mmol) on the 
formation of compound (2) was observed at ratio of compound (1) to 
hydrazine at 0.4:0.4 (mmol), 0.4:0.5 (mmol), 0.4:0.6 (mmol), 0.4:0.7 
(mmol), and 0.4:0.8 (mmol). The concentration of the compound that 
produces the highest mass of the product was set as the optimum 
condition. The effect of reaction time on the product (2) obtained was 
observed at 5, 6, 7.5, 9, and 10 hours into the experiment. The reaction 
time dependence on the product formation was analyzed using the 
optimum reactant ratio. The yellow-coloured powder obtained was 
tested using TLC analysis, dissolution test, FTIR, LCMS-MS, SEM, 
XRD, and 3D7 Plasmodium falciparum malaria test. 
 
Crystallite size analysis 

The crystal size of compounds (1) and (2) were measured with X-ray 
Diffractometer XPert MPD, with a Cu Kα radiation of 1.54 Ǻ at 40 kV 
and 30 mA. The spectra were processed using Origin software to get β, 
the Bragg's angle (θ) and FWHM (full width of the diffraction peak 
measured at half maximum height). The crystal κ value was between 
0.89 ˗ 0.94. In this report, the κ value of 0.94 was used.48–50 The 
observation of theta range was focused on 10° – 40°. The crystallite 
size (D) was measured by using the Scherrer equation:  
 

D = κ λ

β Cos θ
  

 
Antimalarial activity assay 

The antimalarial assay was carried out using a modified Florence 
(2022) procedure.51 Chloroquine-sensitive Plasmodium falciparum 
strain 3D7 was used. The sample was prepared by diluting a 10 mg 
sample in 1000 µL DMSO.  

 
Figure 1: Clove flower bud (a); Methyl eugenol structure (b); 
The appearance of compounds (1) and (2) (c). 
 

 
Figure 2: The compound (2) graph was obtained with the 
reagent concentration and reaction time variation. 
 
Then, these concentrations were made: 1000, 100, 10, 1.0 and 0.1 
µg/mL. The 50% inhibitory concentration (IC50) was determined by 
probit analysis. D0 is the growth of parasites at zero hours (%), Xt is the 
parasite’s growth in the test solutions (%), and Xc is the growth of 
parasites in the negative control solution (%). 
 
% Parasite's Growth = % parasitemia - D0  
% Inhibition = 100% - [�Xt - Xc� x 100%] 
 
Molecular docking and drug-likeness analysis 

A docking experiment revealed the binding modes of compounds (1) 
and (2) with the cysteine protease receptor. The receptor was 
downloaded from the protein data bank with PDB ID 1YVB. The 
receptor was optimized by removing the native ligand, water, and chain 
I. The structure of (1) and (2) was directly drawn using the Chemsketch 
program and well prepared as ligands (1) and (2) by Chimera. The 
molecular docking was run using PyRx.52–54 The docking centers were 
set at 83.4002; ˗34.6003; ˗93.4099 for x, y, and z, respectively. The 
grid box dimensions were set at x = 14.9084; y = 18.3757; z = 14.6403. 
The docking result was analyzed and visualized using discovery studio 
visualizer. The drug-likeness was analyzed with SwissADME. This 
program was also used to analyze compounds' physicochemical and 
pharmacokinetic aspects. 
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Instrumentation and sample preparation 

The functional group of compounds was investigated with the 
potassium bromide pellet and spectrophotometer Fourier Transform 
Infrared Shimadzu at 500–4000 cm-1 wavenumber observation.  
LCMS/MS analysis was carried out using triple quadrupole 8060 
Shimadzu, column Cosmosil 5C18-MS-II (4.6 i.d. × 150 mm; 
Nacalaitesque). Gradient elution consisted of eluent A (water in 0.1% 
formic acid) and eluent B (acetonitrile). The eluent at 0 minute (min) 
was 5% B; 0–3 min: 5% B–85% B; 3–4 min: 85% B; 4–6 min: 90% B; 
and 6–10 min: 100 % B. The flow rate was set to 0.3 mL/minute, and 
the column temperature was maintained at 25 °C. MS/MS detection 
was equipped with an electrospray ionization interface (ESI) operating 
in the positive and negative ion modes. The preparation sample of 
LCMS-MS was done by diluting the sample in 1.5 mL methanol, 
sonicating solution for 1 minute, and filtering the supernatant with 
PTFE 0.22 μm. About 20 μL of samples were injected into the 
chromatographic instrument. The FEI inspect S50 instrument with 
5000x magnification was used to observe the morphology of the 
compound surface. 
 

Results and Discussion 

Synthesis and analysis of the compounds (1) and (2) 

The reaction mechanism of isothiocyanate-based methyl eugenol was 
under Markovnikov's rule in which thiocyanate compounds were also 
formed.55 Compound (1) was derived predictively from methyl eugenol 
and isothiocyanate methyl eugenol polymerization. The polymerization 
mechanism predictively occurred because the double bond in the 
methyl eugenol tail was activated under acidic conditions, then charged 
positive and negative partially. One hydrogen cation of thiocyanic acid 
was bonded to hydrogen-rich carbon. Another allyl-methyl eugenol 
further attacked that positive charge to form polymeric chains. The 
synthesized product was orange-colored powder. (See the left part of 
Figure 1c.) This product would be used as the precursor to form 
compound (2). Methyl eugenol isothiocyanate has a synthetic 
accessibility score of 2.51. The compound (1) was estimated to be 
synthesized easily on a laboratory scale.4  
Compound (2) was synthesized using compound (1) and hydrazine 
monohydrate with various hydrazine concentration ratios. Precursor to 
hydrazine ratios used were at 0.4:0.4 (mmol), 0.4:0.5 (mmol), 0.4:0.6 
(mmol), 0.4:0.7 (mmol), 0.4:0.8 (mmol), and resulted in the best ratio at 
a 0.4:0.8 (mmol) with maximum product gain (0.0862 g). The reaction 
time dependence to compound (2) formation was observed for 10 
hours. The synthesis reaction time was positively correlated with 
compound (2) formation (Figure 2). Thiosemicarbazide-based methyl 
eugenol, laid out on the right side, was illustrated in Figure 1c. The 
concentration ratio and the time reaction affected compound (2) 
formation. 
 

Analysis of functional groups 

The infrared spectra of compounds (1) and (2) were compared directly 
with the infrared spectrum of methyl eugenol. In Figure 3a, the methyl 
eugenol infrared and compound (1) range from 500 cm-1 to 2500 cm-1. 
The research found there were significant changes in the spectra (1), i.e. 
the appearance of an isothiocyanate-specific wavenumber (around 2050 
cm-1) and the disappearance of the allyl-methyl eugenol peak (about 
900 cm-1) in compound (1) spectrum.56,57 It predictively confirms that 
an addition reaction of the double bond allyl-methyl eugenol into a 
single bond has occurred.  A comparison of the infrared spectra of 
compounds (1) and (2) shows that thiosemicarbazide-based methyl 
eugenol has been formed (Figure 3b). It was identified by the loss of 
the isothiocyanate peak (2050 cm-1), and a new peak at 3200 cm-1–3500 
cm-1 for the primary amine was shown. Several wavenumbers strongly 
supported that compound (2) was formed, i.e. the carbon-sulfur bond 
(620 cm-1), carbon-nitrogen bond (1120 cm-1), and the single bond 
between nitrogen and hydrogen at 1600 cm-1. 
 
Molecule ion analysis  

Molecule ion analysis of the synthesis product was carried out using 
LCMS-MS. The results showed predictively that m/z 416 was a dimer 
of methyl eugenol isothiocyanate and m/z 803 was a tetramer of methyl 
eugenol thiosemicarbazide. MS data confirmed the dimers and 
tetramers forming isothiocyanate and thiosemicarbazide in methyl 
eugenol. The phenomenon of polymerization of allyl groups in eugenol 
has been reported. The activity of allyl groups in eugenol was observed 
in concentrated sulfuric acid at room temperature to produce 
polyeugenol.58 Polymerization was also formed in the synthesis of 
limonene isothiocyanate derived from limonene and thiocyanic acid 
sources.44 Identical to methyl eugenol, limonene has a terminal double 
bond that an addition reaction mechanism can occur to form the 
isothiocyanate bond. The polymerization of methyl eugenol derivatives 
using allyl-methyl eugenol groups with a Rhodium catalyst was carried 
out to produce poly (N-propargyl carbamate). This polymerization 
occurred via the allyl- methyl eugenol transformation into a 2-hydroxy 
group.59 The polymerization of eugenol and methyl eugenol was also 
carried out by using Rh (Rhodium), Mo (Molybdenum), and Wolfram 
(W) catalysts. Its methyl eugenol polymerization is possible through the 
methoxy-eugenol and methoxy-methyl eugenol or allyl groups.60 
 
Dissolution test 

The solubility of compounds (1) and (2) was tested using several 
solvents by inserting 2 mg of the sample in a test tube and then adding 
2 milliliters of the test solvent. The test results showed that all 
compounds were well dissolved in DMSO but poorly in water (Table 
1). The solubility of a drug is related to its bioavailability. Drug 
candidates should be able to dissolve in water less than 1 μg/mL to 
meet the bioavailability standards.61 

 

Figure 3: The infrared spectra of methyl eugenol and product obtained. 
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Table 1: Dissolution test of compounds (1) and (2) 
 

Compound: Solvent: 

Diethyl ether Ethyl acetate Methanol n-Hexane Ethanol DMSO Aquadest 

1 + ˗ ˗ + + +++ + 

2  ++ + ˗ + + +++ + 

* - not dissolved, + slightly dissolved, ++ partially dissolved, +++ completely dissolved. 

 
Table 2:  Drug-likeness of compounds (1), (2), and chloroquine 

 

Compound Lipinski Rule*  Veber Rule** 

MW HBA HBD LogP Molar Rf RB TPSA  

1 415.55 5 0 4.48 119.87 11 81.37 

2 802.05 9 3 6.12 230.59 25 156.01 

Chloroquine  319.88 2 1 3.95 97.41 8 28.16 

*Lipinski rule: MW: Molecular Weight ≤500g/mol, HBA: Hydrogen Bond Acceptor ≤10, HBD: Hydrogen Bond Donor ≤5, LogP 
≤5, Molar Refractivity 40-130. 

**Veber rule:   RB: Rotatable Bond ≤10, TPSA: Topological Polar Surface Area (Å) ≤140. 
 

Morphological surface analysis 

SEM experiment was used for morphological surface analysis. SEM 
imaging of the synthesized compound was shown in Figure 5. The two 
compounds had different surface displays; compound (1) showed more 
agglomeration than (2).  
 
Crystallite size of compounds (1) and (2) 

From the MS data, solubility test, and SEM image, it was known that 
compounds (1) and (2) had high molecular weight, bulk, and low 
solubility in water. Drug candidates with poor solubility in water will 
be difficult to digest. These compounds are classified as category 2 or 4 
in the biopharmaceutical classification system (BCS).61 This 
unacceptable drug-likeness character can be overcome using drug 
formulation techniques by considering the Critical Quality Attributes 
(CQAs) and nanosuspension drug candidate parameters, including 
particle size and crystallinity.62 Therefore, the crystal size (D) of these 
two powders was measured by the Scherrer equation, showing D = 
5.38141 nm and D = 3.85276 nm for compounds (1) and (2), 
respectively. The crystallinity degree was also observed since it is one 
of the keys to predicting the solubility of drugs in water and octanol.63 
A comparison between the X-ray diffraction peaks of compounds (1) 
and (2) was presented in Figure 6. The observation of the spectra 
suggested that qualitatively compound (1) was more crystalline than 
compound (2).  
 

Antimalarial activity of compounds (1) and (2) 

In vitro assay is an essential aspect of drug candidates. Drug 
compounds with low solubility and permeability can be improved if 
they have highly active in vitro values. The in vitro analysis of 
compounds (1) and (2) using Plasmodium falciparum was depicted in 
Figure 7. The graph presents the average value of inhibition and growth 
of parasites resulting from the concentration variations of the 
compounds. Statistical analysis was conducted to determine the IC50. 
The in vitro antimalarial test identified compounds (1) and (2) had IC50 
of 0.34 µg/mL and 1.47 µg/mL, respectively. Figure 7 indicates that the 
higher the concentration of the drug candidate, the higher the inhibition 
against the growth of Plasmodium falciparum parasites. This study also 
indicates that the smaller the compound concentration, the higher the 
growth (%) of Plasmodium falciparum. The compounds (1) and (2) 
were more potent against the parasite than chloroquine as an 
antimalarial reference by IC50 value of 4.81 µg/mL.64 
 

Molecular docking and drug-likeness of compounds (1) and (2) 

Molecular docking analysis was carried out to determine the interaction 
of the ligand with the Plasmodium falciparum malaria receptor. This 
analysis requires a receptor with active sites and a drug candidate as a 
ligand. The Plasmodium falciparum receptor used in this study was 
1YVB chain A. Receptor is a macromolecule (lipoprotein or nucleic 

acid) in the cell membrane or nucleus. Receptors have specific atoms or 
functional groups that act as active sites and will interact with drug 
compounds to produce specific biological responses.65–67 Active sites in 
1YVB are Cysteine and Histidine.68 The complex interaction of 
receptor and ligand was identified in Figure 8. It can be seen that ligand 
(1) had a pi-amide bond and a pi-donor hydrogen bond between 
histidine-159 and the aromatic-methyl eugenol. 
 

 
 

 
Figure 4: The spectra and structure prediction of compounds 
(1) and (2). 
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The second receptor active site, cysteine-25, interacted with another 
aromatic-methyl eugenol via a pi-alkyl bond. At the same time, ligand 
(2) did not have hydrogen bonding interactions with the receptor's 
active site. It predictively affected to IC50 value. Ligand (1) interacted 
with the receptor and had better IC50 values than (2).  
For comparison, molecular docking was also run for chloroquine (a 
standard malaria drug). The analysis showed that ligand (1) had the best 
affinities (ΔG) values at ˗6.0 kcal/mol. The value of ligand (1) was 
lower than that of chloroquine (˗5.3 kcal/mol) and ligand (2) (˗1.2 
kcal/mol). These affinity energies indicate that the complex ligand (1) 
and 1YVB chain A are the most stable.69 All the affinities were 
obtained at an RMSD (Root Mean Standard Deviation) of 0.0. 
Biological activity resulting from ligand-receptor interactions that 
contribute to a disease's healing process was called an agonist, and the 
opposite was called an antagonist. Meanwhile, the relationship between 
receptors and ligands between agonists and antagonists was known as 
partial antagonists.65–67 Based on the IC50 values of compounds (1) and 
(2), it can be assumed that these two compounds are agonists. 
 

Physicochemical, pharmacokinetic and drug-likeness 

SwissADME was used to assess the physicochemical and 
pharmacokinetic characteristics of the drug candidates. The drug-
likeness of compounds (1) and (2) was presented in Table 2 which 
compares by chloroquine character.4,70 The physicochemical of 
compounds (1) and (2) were analyzed by radar bioavailability. This 
model represents physicochemical characteristics such as lipophilicity 
(LIPO), molecule size (SIZE), polarity (POLAR), solubility (INSOLU), 
saturation (INSATU), and flexibility (FLEX).  
The requirements for the lipophilicity range (XLog P3) that must be 
met are between ˗0.7 and +1.5. The molecular size (MW) must be 
between 150 and 500 g/mol. The required polarity should be 20 Ǻ2 to 
130 Ǻ2, the solubility range (LogS ESOL) between 0.0 to 6.0, and 
saturation (Carbon fraction in the sp3 hybridization) at 0.25 to 1.0. The 
last requirement in the bioavailability radar is that a drug candidate 
must have a maximum value of 9 for molecular flexibility. This 
flexibility correlates with rotatable bonds of ligands that interact with 
receptors.71,72  The tested molecule qualified against the drug-likeness 
rule is symbolized with a bold blue line within the dotted red lines of 
the bioavailability radar. The physicochemical evaluation of 
compounds (1) and (2) was presented in Figure 9. Compound (1) had 
two characters (flexibility and lipophilicity) outside the dotted red line, 
while compound (2) had four deviations: flexibility, lipophilicity, 
molecule size, and solubility. Compounds (1) and (2) showed low 
flexibility and lipophilicity levels, indicated by lines outside the 
bioavailability radar limit. Low flexibility will affect the ability of the 
drug to interact with target receptors. The lipophilicity section affects 
the absorption ability of drug candidates in fat. The pharmacokinetic 
characteristics of compounds (1) and (2) were evaluated using the 
Boiled-egg model. This model represents the absorbability of candidate 
drugs in the digestive tract or gastrointestinal tract (Gastrointestinal 
absorption = GIA). This model also describes the permeability of 
compounds in the blood-brain barrier system (blood-brain barriers 
=BBB). In the boiled-egg model, the GIA area is represented by the egg 
white area and the BBB area in the yolk section. Compound (1) was 
predicted to be well absorbed in the gastrointestinal tract. However, the 
compound (2) result could not be interpreted because the compound 
symbol (2) position was outside the boiled egg model. Chloroquine, a 
standard antimalarial drug, was tested for comparison (Figure 10). This 
research revealed compound (1) as a promising Plasmodium falciparum 
antimalarial drug candidate. This preliminary research merits further 
investigation for structure elucidation. The molecular size reduction 
might overcome compounds’ physicochemical and pharmacokinetic 
problems of (1) and (2). This includes considering new synthetic 
pathways to produce methyl eugenol isothiocyanate and methyl 
eugenol thiosemicarbazide without polymerization. As previously 
discussed, the formulation of the drug compounds may overcome the 
physicochemical and pharmacokinetic deviations. One method of drug 
formulation is through drug nanosuspension, which accounts for the 
drug's crystal size. Based on the IC50 values of the two synthetic 
products, it is necessary to consider controlling the 
physicochemical/pharmacokinetic aspects and the drug-likeness.  

 
Figure 5: The appearance on the surface of compounds (1) and 
(2). 

 
Figure 6: The X-Ray diffraction spectra of compound (1) and 
compound (2). 
 
To develop isothiocyanate-based methyl eugenol derivate as a drug 
candidate, nanosuspension and encapsulation must be considered 
because these methyl eugenol derivatives are unstable compounds. 
Nowadays, manufacturing drugs in nanosuspension form have become 
a trend. The advantages of nanosuspension drug formulations are high 
drug loading, minimum side effects of excipients, low production costs, 
and easy scaling up.62 
 

Conclusion 

Methyl eugenol derivates that contain nitrogen and sulfur atoms, 
namely isothiocyanate-based methyl eugenol and thiosemicarbazide-
based methyl eugenol, were synthesized in this study. Analysis using 
infrared and mass spectroscopy showed that compound (1) was 
predicted as a dimer of methyl eugenol isothiocyanate and compound 
(2) was a tetramer of methyl eugenol thiosemicarbazide. These two 
synthetic compounds are poorly soluble in water and highly soluble in 
DMSO. The surface morphology and crystal size of compounds (1) and 
(2) showed that these compounds had different surface morphology. 
The crystals (1) and (2) were 5.38141 nm and 3.85276 nm in size, 
respectively. Compounds (1) and (2) were highly active against 
Plasmodium falciparum 3D7.  
Observations using molecular docking demonstrated that compound-
receptor complex (1) had better binding energy than compound (2) or 
chloroquine as a standard antimalarial drug. However, physicochemical 
and pharmacokinetic testing showed that the two synthesized 
compounds had deviations in drug-likeness characteristics.  
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Figure 7:  In vitro anti-malaria analysis of compound (1) and compound (2). 

 
 

 
Figure 8: The interaction of 1YVB chain A with ligands (1) and (2). 
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Figure 9: The bioavailability radar of compounds (1) and (2). 

 

 
Figure 10: The boiled-egg model of compounds (1), (2), and chloroquine. 
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