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Introduction  

           Human survival is linked to the response of science to disease 

outbreaks as typified by the recent COVID-19 pandemic which 

engendered an increased mortality rate globally.
1
 In Sub-Saharan 

Africa, there is an increased rate of mortality and morbidity resulting 

from the prevalence of malaria.
2, 47

 Malaria which is an infectious 

disease has not only engendered deaths but has also resulted in 

economic hardship in Sub-Saharan Africa.
3,4,5

 Malaria has been 

reported to affect a large population of children under 5 years of age, 

and this accounts for close to 70% of malaria deaths globally.
6
 

Discovered in 1880, to date various efforts towards combating the 

parasite seem to be rather ineffective due to the growing resistance to 

standard drugs.
7, 8 

Plasmodium is the genus of the parasitic protozoans 

of the sporozoan subclass Coccidiasina that causes malaria. And its 

species are P. falciparum P. vivax, P. ovale, P. knowlesi, and P. 

malariae.
9
 The P. falciparum species being the most life-threatening 

species for humans utilize its cysteine protease, falcipain-2 (FP2) and 

FP3, in hemoglobin hydrolysis and the phase completion of the 

parasite’s development in man.
9, 10

 It has been reported that the knock-

out of FP2 blocks hemoglobin hydrolysis.
11

 Thus, the inhibition of the 

hydrolysis of hemoglobin leads to the death of the P. falciparum, most 

especially at its trophozoite phase of development.
12
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This, therefore, makes FP2 an important target for the development of 

new antimalarial drugs resulting from its essentiality to the survival of 

the parasite. 
51

 Previous works by different research groups have 

identified hits against FP2.
13,46,49, 50 

 A molecular docking study was 

conducted and a similar binding pose of 3-(1-benzoyl-5-(4-

fluorophenyl)-4,5-dihydro-1H-pyrazol-3yl)-7-(diethylamino)-2H-

chromen-2-one and epoxysuccinate in FP2 inhibition was observed.
13

 

Also, an in vitro validation study on the antiplasmodial activity of an 

acyl-hydrazone-based molecular hybrid against cysteine protease FP2 

in silico was conducted.
14 

The advent of bio-computational tools has 

replaced the employment of traditional methods in the development and 

discovery of drugs.
15

 This is because using the bioinformatics technique 

is viable for designing and producing new medications of biomedical 

interest and takes less time and effort.
1
 Also, compared to the 

traditional method, an advantage of the bio-computational approach is 

its ability to predict the binding affinity, ligand-protein interaction, and 

ADMET properties of the ligand of interest.
1 

In traditional medicine, 

Cymbopogon citratus which belonging to the family Poaceae, has been 

reported to have bioactivity against inflammation, pain, protozoa 

infections, and malaria.
16,17,18

 In vivo studies have shown antimalarial 

activity of Cymbopogon citratus in mice.
16,19

 Also, Gas 

chromatography-mass spectrometry (GC-MS) analysis has revealed the 

presence of cymbopogonol in lemongrass.
20

 In this study, the activity of 

the phytochemicals present in lemongrass was explored against FP2, 

and cymbopogonol was found to have the best inhibitory potential 

towards the target. Also, triterpenoids have been reported to play 

important pharmacological activities like anti-inflammatory, analgesic, 

antipyretic, and hepatoprotective.
21

 They are also reported to have 

antioxidant, antimicrobial, antiviral, antiallergic, antiangiogenic, and 

spasmolytic activities.
22

 These classes of compounds have also been 

reported to have antimalarial activity. For example, synthetic oleanane 

triterpenoids were observed to improve survival in experimental 

cerebral malaria.
23 

Interestingly, Iridal, a triterpenoid extracted from Iris 

germanica L., was reported to have antiplasmodial activity against 
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Plasmodium falciparum chloroquine-resistant and -sensitive strains.
24

 

Likewise, karavote B amongst other triterpenoids from Momordica 

balsamina was identified to have the highest activity against liver 

stages of Plasmodium berghei.
25

 Cymbopogonol is a triterpenoid whose 

biological activity is yet to be determined. This study will be the first in 

the open literature to report the in silico bioactivity of cymbopogonol. 

Owing to the urgency for further therapeutic interventions against 

malaria, this study employed a computational approach to evaluate the 

therapeutic potential of the compound against malaria.
 

 

Materials and Methods 

Ligand preparation 

The test ligand, cymbopogonol (Fig. 1), and standard ligands— 

sulfadoxine, pyrimethamine, lumefantrine, artemether, artemether-

lumefantrine were obtained from the PubChem 

(https://pubchem.ncbi.nlm.nih.gov) with the respective IDs: 1317
52

084, 

3000518, 4993, 6437380, 68911 and 6450800.
26

 Two co-crystallized 

ligands, PDB:GOL and PDB:E64, were extracted from the active site of 

the FP2 receptor. The compound and standard ligand were uploaded to 

PyRx software in MOL SDF format, and the OpenBabel plugin was 

used to convert it to PDBQT format. To get the lowest energy for the 

ligand docking, the output files were minimized at a force field called 

uff. 

 

Preparation of the protein target 

The plasmodium cysteine falcipain-2 (FP2) was the protein target for 

this study. The RCSB Protein Data Bank (PDB) repository 

(www.rcsb.org) was used to find the crystal structure of FP2. The X-ray 

diffraction method was used to derive the FP2 in complex with the 

inhibitor E64 (PDB: 3BPF) and PDB:GOL, with a resolution of 2.9, R-

Value free 0.325, R-Value work 0.2775, and R-Value observed 0.278.
27

  

The non-standard residues, such as ions, water, and bound ligands 

(PDB:GOL and PDB:E64), which were retrieved from the active 

binding pocket by specified methods, were deleted from the structure's 

PDB format before it was uploaded to the PyMol display tool 

workspace. For a molecular docking investigation, the produced protein 

(Figure 2) was subsequently uploaded to the PyRx software. 

 

Molecular docking 

Using the PyRx workspace tool and AutoDock Vina (Scripps Research, 

La Jolla, CA, USA), molecular docking analysis was carried out after 

the target protein and ligand were prepared. 

 

 
Figure 1: Structure of cymbopogonol  
 

 
 

Figure 2: Structure of falcipain-2 

The ligands' energy was reduced to the absolute minimum before being 

transformed to PDBQT. To precisely identify the binding site of the 

target receptor, the ligands and the receptor were chosen for docking 

analysis at the resolution of the grid box, which was taken along the x, 

y, and z axes, respectively, at a maximum dimension of 55.7097 

63.9421 42.8786. The standards were initially docked against the FP2 

receptor, and the interactions that resulted were compared with those of 

cymbopogonol. Additionally, the complex created by the ligands and 

receptor docking position was visualized using the BIOVIA Discovery 

Studio21 (Dassault Systèmes, San Diego, CA, USA) to examine the 

interactions and bonding between the receptor and the ligands. 

 

Docking protocol validation 

By redocking the standard ligands into the catalytic domain or binding 

site of the proteins utilized for the study using the PyRx tool, the 

docking pose generated from the PyRx docking tool was validated.
1
  

 

ADMET predictions  

Model predictions on the SwissADME, ADMETLab server, and 

PROTOX II, respectively, were used to estimate the lead compounds' 

absorption, distribution, metabolism, excretion, and toxicity (ADMET) 

properties.
28, 29

  

 

Results and Discussion 

Test compound’s binding affinity with FP2 drug targets 

The compounds’ binding affinities (ΔG kcal/mol) ranged from -8.4 to -

4.3 for FP2. The standard ligand with the highest binding affinity (-7.5 

kcal/mol) to the FP2 pharmacological target is artemether-lumefantrine. 

Also, of the co-crystallized ligands, E64, exhibits the highest binding 

energy for the FP2 drug target (-6.5 kcal/mol). The test compound, 

cymbopogonol gave a binding affinity higher than all the standard 

inhibitors and the co-crystallized ligands (Table 1).  

Cymbopogonol exhibits the highest affinity for binding. 

Cymbopogonol’s interaction towards the P. falciparum target protein, 

FP2, in this study is an indicator of the compound's inhibitory potential 

against the FP2 biomolecule and its prospective use as a malaria 

treatment agent (Table 1). Due to structural similarities with other 

triterpenoids of pharmacological significance (such as iridal, ursolic 

acid, balsaminol A, balsaminol B, balsaminoside A, cucurbalsaminol C, 

karavilagenin C, karavoate A, karavoate B, karavoate C, karavoate D, 

karavoate E, karavo), cymbopogonol can alter how the malaria-causing 

protein drug target performs.
24, 30, 31

 According to this work, 

cymbopogonol has a higher affinity for binding to the FP2 target 

proteins than the standard and co-crystallized ligands. This could be 

linked to the hydrophobic interactions of the potential inhibitor’s 

skeleton as visualized from the two-dimensional molecular interaction, 

supporting its binding of triterpene to FP2 (Fig. 3). Because 55% of 

amino acids occur as non-polar, interactions involving non-polar 

groups are critical for biological recognition, including protein-ligand 

binding.
1
 Hydrophobic interaction is known to be a structural parameter 

that determined the binding affinity during drug design.
32, 48

 When 

compared to the standard ligand, the triterpenoid molecule- 

cymbopogonol, possesses the best molecular docking score. This 

possible inhibitor showed a binding behavior resembling that of the co-

crystallized ligand, E-64. Recently, Scientific Reports published that E-

64 is a potential drug and inhibitor in the treatment of malaria as it 

binds tightly to FP2 and blocks access to the catalytic residue of FP2.
12

 

In this molecular docking study, the molecular interaction of the 

triterpenoid is compared to that of E64. The binding affinity results 

demonstrate that cymbopogonol presented favorable binding with FP2 

receptors compared to that of E64 (Table 1). 

 

Analysis of selected hit compounds' molecular docking 

Figures 3 and 4 show the two-dimensional (2D) and three-dimensional 

(3D) interactions of FP2 drug target in complex with cymbopogonol 

and E-64 respectively. Table 2 highlights the hydrophobic interaction 

of the FP2- cymbopogonol complex. Amino acids LEU I:78, MET I:29, 

VAL I:44, VAL I:47, LEU I:25, and ARG I:43 interacted with the test 

compound (Figures 3-4, Table 2). The amino acids that interact with 

FP2 and E-64 are VAL I:44 and LEU I:78.  

https://pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/
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Table 1: Test compounds’ binding affinities (∆G in kcal/mol) 

against FP2 drug targets 
 

Ligand Binding 

Affinity(∆G Energy, 

Kcal/mol) 

RMSD/ 

ub 

RMSD/ 

lb 

Test Ligand     

Cymbopogobol -8.4 0 0 

Standard ligands    

Sulfadoxine -6.9 0 0 

Pyrimethamine -7.1 0 0 

Lumefantrine -6.4 0 0 

Artemether -7.1 0 0 

Artemether- 

Lumefantrine 

-7.5 0 0 

Co-crystallized ligands    

E64 -6.5 0 0 

Glycerol -4.3 0 0 

 

 
Figure 3: The 2D representation of the molecular interaction 

between amino-acid residues of FP2 with (a) cymbopogonol (b) 

E-64. 

 
Figure 4: The 3D representation of the molecular interaction 

between amino-acid residues of FP2 with (a) cymbopogonol (b) 

E-64. 
 

Due to the electrostatic attraction of the molecules in these two 

compounds, the interactions between FP2 and E-64 involved the amino 

acids ARG I:43, ASN I:33, SER I:41, SER I:42, and GLN I:22 through 

hydrogen bonding (Table 3). FP2 target and the test compound, 

cymbopogonol, was docked and analysis of the target's 3D and 2D 

structures revealed interactions between the compounds. Similar 

interactions with the protein were observed for cymbopogonol and E64 

via hydrophobic (alkyl-alkyl) interaction. The potential inhibitor had 

other hydrophobic interactions with the amino acids LEU I:78, MET 

I:29, VAL I:44, VAL I:47, LEU I:25, and ARG I:43 on the FP2 

receptor. The structural characteristic of the hydrophobic interaction, 

which is measured by the amount of hydrophobic surface buried when 

ligands bind, best corresponds with binding free energy.
32

 The co-

crystallized ligand, E64, interacted with amino acids ARG I:43, ASN 

I:33, SER I:41, SER I:42, and GLN I:22 on the receptor of FP2. This is 

due to hydrogen bonding between the polar moieties of the compound 

and the amino acids. It is crucial to note that the interaction of the 

putative inhibitor with the amino acids in the binding pocket may 

prevent FP2 from acting as a catalyzer, thereby preventing the spread of 

malaria. The hydrophobicity of this compound compared to E64 makes 

it a better potential inhibitor of FP2 as evident by their relative binding 

affinities. This lemon grass-derived triterpenoid has not been worked 

on scientifically before now, and there is no recorded bioactivity of 

cymbopogonol in the open literature. Therefore, these results suggest 

that cymbopogonol will potentially interfere with the associated 

Falcipain-2 (FP2). Further investigations to validate these findings and 

understand the mechanism of the compound against malaria disease in 

vivo are recommended. We recommend that the test compound is 

considered for optimization and future studies in vivo studies and 

possible clinical trials. 

 

Molecular docking protocol validation  

In Fig. 5, the validation of the docking methodology is demonstrated by 

the re-docking of cymbopogonol and E-64 into the catalytic domain. 

The outcome demonstrates that there was a considerable overlap when 

E-64 and cymbopogonol were re-docked against FP2 (Fig. 5a and 5b). 

The perfect overlap of the re-docked pose with the experimental 

orientation shows that Autodock vina on PyRx accurately re-docked the 

co-crystallized ligand, then the test ligand back into the binding pocket 

of FP2. This demonstrates the validity of the docking methodology 

employed in this study and the accuracy of the docking ratings. 

Additionally, a study reporting a similar docking approach showed that 

by re-docking the co-crystallized ligand (PDB Ligand ID: 2WR) with 

the researched mutant EGFR (PDB: 3W2S), there was a considerable 

overlap.
33

 It was clear from the analysis that the re-docked co-

crystallized ligand had almost perfect overlap.  

 

ADMET Profile 

Table 4 lists the compounds' expected scores for drug-likeness, water-

solubility, bioavailability, and lipophilicity according to SwissADME. 

The molecular weight of cymbopogonol from Cymbopogon citratus is 

426.72 g/mol which is higher than the molecular weights of all other 

ligands except Lumefantrine and Artemether-Lumefantrine. Log S 

value of cymbopogonol is -6.96 (poorly soluble) as compared to other 

ligands which range from 1.08 (glycerol - highly soluble) to -11.79 

(lumefantrine - poorly soluble). Also, the Log P value of the compound 

is 7.20 (poorly soluble) as compared to the standard ligands and E64 

which range from -1.09 to 7.91. The bioavailability score of 0.55 and 

one Lipinski violation for cymbopogonol point to its potential for use 

as an oral medication. Also, cymbopogonol has MWt ≤500 (426.72 

g/mol) although it has a consensus Log P value of 7.20 (Table 4). 

Furthermore, the MR of cymbopogonol is 135.14. Also, the compound 

obeyed the Veber rule and had a similar bioavailability score of 0.55. 

Additionally, it generated ratings for synthetic accessibility (SA) of 

5.52. The compound showed a TPSA score of 20.23. The GI absorption 

potential is low for the test ligand compared to other ligands. 

cymbopogonol showed no BBB permeability with a skin permeation 

value (Log Kp) of – 2.28 cm/s (Table 5). Since the putative inhibitor is 

not a Pgp substrate, it can be prevented from accessing its site of action 

even though it is predicted to have a low GI absorption value (Table 5). 

The pharmacokinetics prediction and cytochrome P450 inhibitory 

potential of cymbopogobol are further displayed in Table 5. In 

comparison to the other compounds, cymbopogonol is not a potent 

inhibitor of CYP1A2, CYP2C19, CYP2C9, and CYP3A4 (Table 5). In 

addition, the inhibitor did not exhibit any potential to inhibit hERG or 

to be carcinogenic, or hepatotoxic (Table 6).  

 

 



                                              Trop J Nat Prod Res, October 2022; 6(10):1687-1694               ISSN 2616-0684 (Print) 

                                                                                                                                                               ISSN 2616-0692 (Electronic)  
 

1690 
 © 2022 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License  

Table 2: Table of chemical interactions of the FP2 binding pocket with cymbopogonol 
 

Name Parent XYZ:X XYZ:Y XYZ:Z Category Types From Chemistry To Chemistry 

I:MET29 -  Ligand  103.69 -21.8794 -113.015 Hydrophobic Alkyl Alkyl Alkyl 

I:ARG43 - 

N:UNK1 

Ligand Non-

bond Monitor 103.15 -19.0089 -116.01 Hydrophobic Alkyl Alkyl Alkyl 

I:VAL44 - 

N:UNK1 

Ligand Non-

bond Monitor 100.564 -20.6483 -115.313 Hydrophobic Alkyl Alkyl Alkyl 

I:VAL44 - 

N:UNK1 

Ligand Non-

bond Monitor 98.7027 -20.7281 -115.814 Hydrophobic Alkyl Alkyl Alkyl 

I:VAL47 - 

N:UNK1 

Ligand Non-

bond Monitor 94.508 -20.6368 -114.707 Hydrophobic Alkyl Alkyl Alkyl 

I:LEU78 - 

N:UNK1 

Ligand Non-

bond Monitor 105.682 -17.9094 -111.36 Hydrophobic Alkyl Alkyl Alkyl 

N:UNK1:C - 

I:ARG43 

Ligand Non-

bond Monitor 105.259 -19.2497 -115.82 Hydrophobic Alkyl Alkyl Alkyl 

N:UNK1:C - 

I:LEU78 

Ligand Non-

bond Monitor 106.867 -17.7452 -112.215 Hydrophobic Alkyl Alkyl Alkyl 

N:UNK1:C - 

I:LEU78 

Ligand Non-

bond Monitor 105.778 -16.7933 -111.757 Hydrophobic Alkyl Alkyl Alkyl 

N:UNK1:C - 

I:VAL44 

Ligand Non-

bond Monitor 97.5705 -21.2037 -116.507 Hydrophobic Alkyl Alkyl Alkyl 

N:UNK1:C - 

I:VAL47 

Ligand Non-

bond Monitor 94.6408 -21.32 -115.83 Hydrophobic Alkyl Alkyl Alkyl 

N:UNK1:C - 

I:LEU25 

Ligand Non-

bond Monitor 97.2733 -21.6535 -111.76 Hydrophobic Alkyl Alkyl Alkyl 

N:UNK1:C - 

I:VAL47 

Ligand Non-

bond Monitor 94.5613 -21.3735 -113.647 Hydrophobic Alkyl Alkyl Alkyl 

 

Table 3: Table of interactions displaying how the co-crystallized ligand, E-64, interacts chemically with the FP2 binding pocket 
 

Name Parent XYZ:X XYZ:Y XYZ:Z Category Types From Chemistry To Chemistry 

I:ASN33:HD2

1 - N:UNK1:O 

Ligand Non-

bond Monitor 

106.864 -21.124 -113.816 Hydrogen Bond Conventional 

Hydrogen Bond 

H-Donor H-Acceptor 

I:SER41:HG - 

N:UNK1:O 

Ligand Non-

bond Monitor 

110.419 -17.98 -115.603 Hydrogen Bond Conventional 

Hydrogen Bond 

H-Donor H-Acceptor 

I:ARG43:HE - 

N:UNK1:O 

Ligand Non-

bond Monitor 

102.898 -16.645 -116.335 Hydrogen Bond Conventional 

Hydrogen Bond 

H-Donor H-Acceptor 

N:UNK1:H - 

I:SER42:O 

Ligand Non-

bond Monitor 

107.466 -20.9235 -115.572 Hydrogen Bond Conventional 

Hydrogen Bond 

H-Donor H-Acceptor 

N:UNK1:H - 

I:GLN22:O 

Ligand Non-

bond Monitor 

99.069 -20.036 -108.255 Hydrogen Bond Conventional 

Hydrogen Bond 

H-Donor H-Acceptor 

I:ARG43 - 

N:UNK1 

Ligand Non-

bond Monitor 

102.292 -19.1092 -116.492 Hydrophobic Alkyl Alkyl Alkyl 

I:VAL44 - 

N:UNK1 

Ligand Non-

bond Monitor 

99.7063 -20.7487 -115.795 Hydrophobic Alkyl Alkyl Alkyl 

N:UNK1:C - 

I:LEU78 

Ligand Non-

bond Monitor 

105.494 -17.7497 -110.805 Hydrophobic Alkyl Alkyl Alkyl 



                                              Trop J Nat Prod Res, October 2022; 6(10):1687-1694               ISSN 2616-0684 (Print) 

                                                                                                                                                               ISSN 2616-0692 (Electronic)  
 

1691 
 © 2022 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License  

Table 4: Predicted Lipophilicity (Log P), Water Solubility (Log Sw), Druglikeness, and Bioactivity of test compounds. 
 

Parameters Cymbopogonol Sulfadoxine Pyrimethamine Lumefantrine Artemether Artemether-Lumefantrine E-64 Glycerol 

Molecular weight (g/mol) 426.72 310.33 248.71 528.94 298.37 827.31 357.41 92.09 

Consensus Log P 7.20 0.69 2.29 7.91 2.70 9.81 -0.58 -1.09 

Log Sw (Silicos-IT) -6.96 -4.03 -4.87 -11.79 -4.18 -11.79 -1.31 1.08 

Solubility class Poorly soluble Soluble Soluble Poorly soluble Moderately soluble Insoluble Soluble Highly soluble 

#Heavy atoms 31 21 17 35 21 56 25 6 

#Aromatic heavy atoms 0 12 12 18 0 18 0 0 

Fraction Csp3 0.93 0.17 0.17 0.33 1.00 0.57 0.73 1.00 

#Rotatable bonds 1 5 2 10 1 11 13 2 

#H-bond acceptors 1 6 2 2 5 7 6 3 

#H-bond donors 1 2 2 1 0 1 5 3 

MR 135.14 76.53 71.06 152.61 76.07 228.68 90.06 20.02 

TPSA (Å2) 20.23 124.81 77.82 23.47 46.15 69.62 172.43 60.69 

Lipinski violations 1 0 0 2 0 2 0 0 

Ghose violations 3 0 0 3 0 4 1 4 

Veber violations 0 0 0 0 0 1 2 0 

Egan violations 1 0 0 1 0 1 1 0 

Muegge violations 2 0 0 1 0 3 1 2 

Bioavailability Score 0.55 0.55 0.55 0.17 0.55 0.17 0.55 0.55 

Synthetic availability 5.52 2.99 2.43 4.52 6.65 8.97 4.18 1.31 

 

Table 5: Pharmacokinetics prediction output of test compounds. 
 

Parameters/ID Cymbopogonol Sulfadoxine Pyrimethamine Lumefantrine Artemether Artemether-Lumefantrine E-64 Glycerol 

GI Absorption Low High High Low High Low Low High 

Blood-brain permeant No No Yes No Yes No No No 

Pgp substrate No No No Yes No Yes Yes No 

CYP1A2 inhibitor No No Yes No Yes No No No 

CYP2C19 inhibitor No No Yes No No No No No 

CYP2C9 inhibitor No No No No No No No No 

CYP2D6 inhibitor No No No Yes No No No No 

CYP3A4 inhibitor No No Yes No No Yes No No 

Skin permeant Log Kp (cm/s) -2.28 -7.70 -5.91 -3.34 -5.61 -2.65 -9.12 -8.11 
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Table 6: Toxicity profile prediction of test compounds 
 

Target classification Cymbopogonol Sulfadoxine Pyrimethamine Lumefantrine Artemether Artemether-

Lumefantrine 

E-64 Glycerol 

hERG (hERG Blockers) - --- --- +++ -  - --- 

H-HT (Human Hepatotoxicity) --- - +++ --- +  + --- 

AMES (Ames Mutagenicity) --- --- --- --- -  --- --- 

LD50 (LD50 of acute toxicity) 3.393 -log mol/kg 

(172.644 mg/kg) 

1.979 -log mol/kg 

(3257.097 mg/kg) 

2.594 -log mol/kg 

(633.44 mg/kg) 

3.117 -log mol/kg 

(404.032 mg/kg) 

2.246 -log mol/kg 

(1693.434 mg/kg) 

1000mg/kg 2.213 -log mol/kg 

(2188.608 mg/kg) 

1.11 -log mol/kg 

(7148.77 mg/kg) 

DILI (Drug Induced Liver Injury) --- +++ ++ --- -  --- --- 

FDAMDD (Maximum 

Recommended Daily Dose) 

- +++ + - +  ++ +++ 

Toxicity Class 5 6 3 4  4 4 4 5 

 

 

 
Figure 5: Validation of docking: comparability of the re-docked binding mode of (a) 

cymbopogonol in FP2 binding pocket (b) the co-crystallized pose of E-64 in FP2 

binding pocket. 

 

 

The compounds have moderate ADMET properties in addition to the inhibitory potentials against 

FP2 in cymbopogonol. To retain its binding affinity, the chemical might need lead optimization of 

its characteristics. Absorption, distribution, metabolism, elimination, and toxicity are all parts of 

the ADMET analysis. It is a test that determines if a molecule can be quickly and effectively 

absorbed, transported to its intended location of the action, digested without impairing activity, 

and excreted from the body without having hazardous effects. A high-quality drug candidate 

should have the necessary ADMET qualities at a therapeutic dose in addition to being effective 

against the therapeutic target.
34,45

. As a result, numerous in silico models for predicting chemical 

ADMET properties have been developed, which is helpful since it identifies medication failure 

due to pharmacokinetics before moving on to the clinical phase.
35

 Water solubility is another 

physicochemical feature that affects a drug's ADMET activities, while lipophilicity is typically 

regarded as a crucial factor in determining permeability across tissue membranes.
35, 36

 Orally 

administered medications typically have a high lipophilic value, indicating simple passage and 

absorption through the intestinal lining, penetration of the membrane of target cells, and blood 

flow. The log P value of a chemical has a direct association with its lipophilicity but an inverse 

relationship with its water solubility.
37

 Consequently, cymbopogonol had an interesting Log P 

values of 7.20 compared to the co-crystallized ligands (Table 4). Cymbopogonol's poor solubility 

may have been caused by the atoms, a higher MR value, and molecular weights. However, more 

studies on the aspect of lead optimization may be done for better in silico outcomes.
38

 Prodrugs 

are inactive compounds that are created by chemically altering physiologically active molecules.
39

 

Therefore, inactive or less active derivatives of the potential inhibitor can be created towards 

increasing its lipophilicity and water solubility. These derivatives will then go through a 

biochemical or enzymatic transformation in vivo to release the active moiety responsible for 

eliciting pharmacological effects. A qualitative evaluation of oral bioavailability, drug-likeness is 

established based on chemical structures and physicochemical properties.
40

  A ligand will be 

deemed orally inert if it breaches two or more of Lipinski's requirements, including those 

requiring five H-bond donors, ten H-bond acceptors, a molecular weight of 500 g/mol, and a log P 

of 5.43 for an orally active medication.
41

 In light of these requirements, cymbopogonol satisfies 

the prerequisites for oral bioavailability as evidenced by its Consensus (Table 4).



                                              Trop J Nat Prod Res, October 2022; 6(10):1687-1694               ISSN 2616-0684 (Print) 

                                                                                                                                                               ISSN 2616-0692 (Electronic)  
 

1693 
 © 2022 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License  

Additionally, the inhibitor met Veber's requirement, which requires the 

presence of rotatable bonds and a polar surface area (TPSA) of 140, 

while E64 violated it.
42

. Further evidence that the prospective inhibitor 

will be a successful oral medication comes from the bioavailability 

score of 0.55 (Table 4). In comparison to the standard and co-

crystallized ligands, this finding demonstrates the drug-likeness of 

cymbopogonol. The putative inhibitor will not participate in drug-drug 

interactions, according to pharmacokinetic projections (Table 5). Phase 

I drug metabolism is facilitated by the isoenzyme superfamily 

cytochrome P450 (CYP), which catalyzes a number of metabolic 

reactions.
43

  One of the main causes of pharmacokinetics-related drug-

drug interactions is the suppression of the five major isoforms 

CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, which 

eventually become the substrates of pharmaceuticals.
37, 44

. From our 

study, cymbopogonol exhibits interactions with any of the CYP 450 

isoforms, and thus may not be involved in drug-drug interactions.  

Comparing cymbopogonol to the co-crystallized ligand E64, it is 

expected that it is not a Pgp substrate. An ATP-binding cassette 

transporter called Pgp is in charge of actively effluxing xenobiotics 

through biological membranes as this defends the body against foreign 

toxins and increases medication resistance.
35

 The findings demonstrate 

that, unlike E64, which may be stopped from accessing its target site 

through active efflux of the ATP-binding cassette, the putative inhibitor 

is predicted to reach its target site. The toxicity prediction results, 

however, indicated that it does not tend to any of the toxicity criteria 

examined.  

 

Conclusion 

Cymbopogonol was tested for potential inhibitory effect against FP2, a 

crucial target in the treatment of malaria. The ligand’s bioactivity has 

not been investigated in the open literature. The substance had the 

highest binding affinity of - 8.40 kcal/mol when compared to the co-

crystallized ligand of FP2 and currently available conventional 

medications for malaria. The FP2 receptor-binding motifs consisting of 

amino acid residues- LEU I:78, MET I:29, VAL I:44, VAL I:47, LEU 

I:25, and ARG I:43- interacted with the compound. This triterpenoid 

has a good ADMET profile and exhibited no potential to block hERG, 

hepatotoxicity, cancer, mutagenicity, or cause drug-liver damage. For 

this reason, cymbopogonol may be considered for further research and 

development into a novel medication for the treatment of malaria. 
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