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Introduction  

            The platelet-activating factor receptor (PAFR) is a G-protein 

receptor with seven trans membrane domains.
1
 It has been the 

therapeutic target for PAF-mediated diseases for many years.
2
 The 

PAFR is capable of binding to its natural ligand, PAF, and stimulates 

some signalling mechanisms in the body.
1
 The complex of PAF-PAFR 

triggers inflammatory pathways which induce pathological responses, 

such as cancer, chronic obstructive pulmonary disease (COPD), asthma, 

allergic disorders, neurodegenerative disorders and immune 

suppression.
2
 PAF receptor is identified in several organ tissues, 

including the brain, platelets, leucocytes and muscles.
2-3

 These 

distributions throughout the body cause so many implications of PAF 

binding into PAFR. To inhibit the pathological conditions due to PAF-

PAFR interaction, PAF antagonists have been developed, which also 

have the capability to bind with PAFR. The action of PAF antagonists 

may competitively or non-competitively displace PAF agonists from 

PAFR active site.
4 

To date, various molecules exhibit PAFR 

antagonistic activity potentials, such as structurally related synthetic 

PAF derivatives, synthetic compounds without structural similarity to 

PAF, metal complexes, and natural products.
5
 The implication of the 

natural PAF antagonists is to inhibit and reduce all undesirable 

reactions in the body.
6
 Among PAF antagonists reported are including 

ginkgolide B, kadsurenone and glitoxins.
7
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Therefore, the potential of natural product compounds as PAF 

antagonists are tested in the flavonoids which contain a very large class 

of polyphenolic compounds in the plant kingdom.
8 

Flavonoids 

consisted of the 15-carbon skeleton which forms two phenyl rings, A 

and B connected by a heterocyclic 4H-pyrane ring named C.
8
 Three 

tested flavonoids (apigenin, galangin and fisetin) in this study were 

variance in the number of the hydroxyl group and the position on the 

basic flavone structure. These flavonoids were also reported in several 

biological activities such as antiviral,
9-10

 anticancer,
11-13

 antiplatelet,
14-15

 

anti-inflammatory,
16-18

 and antioxidant.
19-21

 A recent study found that 

apigenin, galangin and fisetin interacted with cancer-related proteins at 

low binding affinities in molecular docking analysis.
22 

 Some key 

features have been identified in the PAFR binding site in the in-silico 

modelling studies, which consisted of a bipolarized cylinder and shorter 

domain.
23

 A large lipophilic binding pocket and a hydrogen bond donor 

that can interact with either a carbonyl or oxygen atom of the 

flavonoids is hoped to anticipate a better interaction towards 

antagonistic reaction.
2 

This study aimed to generate a comprehensive 

conformation of the PAFR-flavonoid complex according to their 

stability and understanding of the dynamic behaviour of the final 

complex to improve the further process of the drug discovery process.  

 

Materials and Methods 

Preparation of Ligand Structural Files 

The structures of three selected flavonoids were retrieved from the 

PubChem database (http://pubchem.ncbi.nlm.nih.gov/) (Figure 1). The 

BIOVIA Discovery Studio 2017 R2 was used to build the three-

dimensional ligand structures. Meanwhile, the minimization of each 

structure was done using the Hyperchem Pro 6.0 software to form the 

lowest energy conformations. 

 

Preparation of Protein Structural File 

The protein structure of PAFR was obtained from the RCSB Protein 

Data Bank (PDB ID: 5ZKP).
24

 Heteroatoms and water molecules from 
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the PAFR structure were removed using Discovery studio Visualizer 

v3.1 (Accelyrys Inc. San Diego, CA, USA). Besides, both hydrogen 

and nonpolar hydrogen atoms were added and merged to the PAFR 

protein, respectively. Gasteiger charges were then added to the protein 

preparation before assigning AutoDock type atoms to the PAFR 

protein. 

 

Molecular Docking Simulation 

AutoDock Vina software was used for all docking simulations in this 

study.
25 

The flavonoids were positioned at the binding site of PAFR. 

Before site-directed docking by all flavonoids, blind docking was 

performed into PAFR using SR 27417 and cedrol, which were PAF 

antagonists. The docking simulation at the identified binding site was 

done with exhaustiveness set to 100 and repeated 10 times to determine 

the docking conformation. A receptor grid file was produced with a 

grid box dimension of 20 × 20 × 20 Å on the x, y and z axes, with 

coordinates X = 31.978, Y = -3.429, and Z = 8.69. The flavonoids-

PAFR binding interactions were assessed using the Discovery Studio 

Visualizer. 

 

Molecular Dynamics (MD) Simulation 

Molecular dynamics (MD) was conducted based of the selection from 

the best-docked conformers to evaluate the binding stability of the 

flavonoid-PAFR complex. The topology of PAFR protein was done 

using the Amber ff14SB force field,
26

 in which hydrogen atoms were 

added to the defined topology of PAFR. Meanwhile, all ligands 

(flavonoids and cedrol) were determined using the general AMBER 

force field (GAFF)
27

 with the AM1-BCC charge model.
28

 The complex 

of PAFR-flavonoid was solvated with TIP3P water model
29

 in a 

rectangular box of 10 Å margin. The system was neutralized by adding 

sodium and chloride, accordingly. The preparation steps of those inputs 

were carried out using the AmberTools18 software suite,
30

 particularly 

the Antechamber package
31

 and tLEaP programs. Six phases of the 

simulation were conducted, including positional-restraint minimization, 

full minimization, positional-restraint heating, positional-restraint 

density, equilibration and production. In the positional-restraint phase, 

the PAFR-flavonoid complex's heavy atoms were weakly restrained 

with a 10 kcalmol
-1

 A-3 harmonic force constant. This minimization 

phase was done using the L-BFGS algorithm
32-33 

as well as the full 

minimization until the system locally converged at 1 kJmol
-1

 energy 

tolerance. The positional-restraint heating phase was done in a 

canonical ensemble (NVT) for 50 ps from 0 to 300 K in a gradual 2-K 

increment. The positional-restraint density phase was carried out in an 

isothermal-isobaric ensemble (NPT) for 50 ps at 300 K. The two 

equilibration and production phases were performed in an isothermal-

isobaric ensemble (NPT) at 300 K for 1 ns and 30 ns, respectively. The 

temperature of the NVT ensemble was maintained at 300 K using the 

Langevin thermostat
34-35 

with a friction coefficient of 1 ps
-1

. 

Meanwhile, the temperature of the NPT ensemble was maintained as in 

the NVT ensemble, and the pressure was sustained at 1 bar using 

Monte Carlo barostat.
36-37

 All phases in the MD simulation were run 

using OpenMM version 7.3
38

 incorporated with the NVIDIA GTX 

Titan X card. A periodic boundary fashion was set for the simulation 

process in a Langevin dynamics
34-35

 with a 2 fs time step. The 

SHAKE/SETTLE algorithm was used for constraining the covalent 

bonds between the heavy atom and hydrogen atom.
39-40

 The non-

bonded (first type of interaction) and electrostatic interactions were 

assessed using the particle-mesh Ewald method
41

 with a cut-off of 10 Å 

to limit the calculation of direct space sum. Meanwhile, the interaction 

of van der Waals (the second type of the non-bonded interaction), was 

truncated at 10 Å. 

 

Post-MD Analysis 

The evaluation of the binding properties of the ligands was conducted 

using a 30 ns production trajectory. MD simulation stability and the 

ligand-binding stability were obtained via calculation of the root mean 

square deviation (RMSD) of the protein and ligand, respectively. The 

calculation of hydrogen bonding in flavonoids and PAFR were done 

using the CPPTRAJ program,
42

 which is comprised of AmberTools18. 

 

Calculation of Free Energy of Binding 

Molecular mechanics energies incorporated with generalized Born and 

surface area continuum solvation (MMGBSA) were used to determine 

the free energy of binding. All free energies were calculated using 100 

trajectory frames throughout the production trajectory. The process was 

reported in a python script, MMPBSA.py
43

, using the AmberTools18.  

 

Results and Discussion 

Docked Flavonoids into PAFR 

This study was conducted to examine the molecular docking between 

flavonoids with PAFR protein. The results presented in Table 1 show 

that all studied flavonoids had better binding affinities, ranging from - 

9.1 to - 8.9 kcalmol
-1

, compared with cedrol (- 8.1 kcalmol
-1

) as a 

positive PAF antagonist drug. Apigenin and galangin exhibited the 

same binding affinity of - 9.1 kcalmol
-1

. However, apigenin interacted 

with PAFR through two different intermolecular interactions, which are 

hydrogen bonds and hydrophobic interaction. Interesting to note that 

three critical residues formed π-interactions between the ring structures 

of flavonoids with Trp73, Phe97 and Leu279 of PAFR protein (Figures 

2 and 3). The same residues of PAFR have also interacted with cedrol, 

hydrophobically. Fisetin was seen to have the highest H-bonds 

formation as compared to apigenin and galangin (Table 1). 

 

Table 1:  Docking results illustrating the binding affinities and interaction profile of standard agonist and antagonist of PAF and flavonoids 

with PAFR. 
 

Ligand 
Binding Affinity 

(kcalmol
-1

) 
Hydrogen Bonding Hydrophobic Interaction 

Electrostatic 

Interaction 

SR 27417 (re-docked 

antagonist) 

-10.6 Tyr77, Phe174 Trp73, Phe97, Phe98, Tyr102, Phe152, His188, 

Ile191, His248, Leu279, Leu282 

- 

Cedrol (antagonist) 

 

-8.1 - Trp73, Phe97, Phe152, Phe174, His248, His275, 

Leu279 

- 

PAF (agonist) 

 

-7.9 Tyr151, Asp156, 

His176, His188 

Phe18, Tyr22, Trp77, Leu279 His188 

Apigenin -9.1 Tyr177, Gln252 Trp73, Phe97, Phe174, Leu279 - 

Galangin -9.1 - Trp73, Phe97, Leu279 - 

Fisetin -8.9 Tyr77, Gly94, His248 Trp73, Phe97, Leu279 - 

Cys: Cysteine, Asp: Aspartate, Glu: Glutamate, Phe: Phenylalanine, Gly: Glycine, His: Histidine, Ile: Isoleucine, Leu: Leucine, Gln: Glutamine, Arg: 

Arginine, Thr: Threonine, Trp: Tryptophan, Tyr: Tyrosine. 
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Figure 1: Structures of flavonoids  
 

 

This could be due to the presence of more hydroxyl groups in its 

structure. In contrast, π- π interactions were detected in all rings A, B 

and C of apigenin and galangin, but not fisetin (Figure 2), which 

contributed to the higher binding affinity of apigenin and galangin.  

As shown in Table 1, the binding affinity of PAF agonist was slightly 

weaker than antagonist ligands. As the PAFR could be activated or 

deactivated,
44

 both agonist and antagonist ligands interact at different 

residues of the PAFR binding pocket. All flavonoids acted 

antagonistically at the same binding pocket with PAFR, which is 

similar to cedrol as an antagonist drug (Figure 4). In addition, 

interaction with Phe97 at helix III and helix IV position of PAFR, 

which is found in all flavonoids, suggested the blocking conformation 

towards the inactive mode of PAFR.
45

 The antagonistic action of these 

three flavonoids (apigenin, galangin and fisetin) were expected to 

compete with PAF agonist with better binding affinity against PAFR. 

 
Figure 2: Two-dimensional illustration of binding interaction of the flavonoids and cedrol with the residues within the binding site of 

PAFR. a) Cedrol b) Apigenin, c) Galangin, d) Fisetin. 
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Table 2:  Analysis of MD simulation on PAFR binding site in complex with standards and flavonoids 

  
Ligand RMSD (Å) van der Waals Electrostatic Total Key Residue 

SR 27417 

(antagonist) 

1.52 ± 0.27 -69.3849 ± 4.1718 -12.9869 ± 4.1690 -56.4263 ± 6.3791 Arg14, Tyr22, Trp73, Phe97, Phe98, Phe152, 

Phe174, Gln252, Leu279 

Cedrol 

(antagonist) 
6.24 ± 0.52 -33.8335 ± 2.4504 -4.7380 ± 3.0725 -29.3495 ± 2.8356 Phe97, Phe98, Phe174 

PAF (agonist) 5.57 ± 0.44 -80.1787 ± 3.4786 -79.6490 ± 7.4553 -79.9716 ± 5.2763 

Phe97, Phe98, Thr101, Phe152, Phe174, Tyr177, 

His188, Ile191, His248, Gln252, Trp255, Leu279, 

Leu282 

Apigenin 3.68 ± 0.23 -31.9933 ± 3.2409 -32.5584 ± 3.7755 -33.5873 ± 2.7083 Phe97, Phe98, Thr101, Glu175, Leu279 

Galangin 4.20 ± 0.38 -33.6591 ± 2.9131 -14.1740 ± 3.9503 -26.6665 ± 3.2034 Phe97, Phe98, Thr101, Leu279, Leu282 

Fisetin 3.34 ± 0.27 -35.3665 ± 2.9542 -36.1582 ± 14.4099 -35.3989 ± 8.2078 
Phe97, Phe98, Thr101, Phe174, Glu175, His188, 

Gln252, Leu279 

All values represent means ± SD 

 

 
Figure 3: Three-dimensional illustration of binding interaction 

of the flavonoids and cedrol with the residues within the 

binding site of PAFR. a) Cedrol, b) Apigenin, c) Galangin, d) 

Fisetin.  
 

 
Figure 4: Three-dimensional illustration of all flavonoids 

overlaid with cedrol in PAFR. 

Furthermore, as the agonist induces the mitogen-activated protein 

kinase (MAPK) pathway,
2
 these flavonoids could inhibit the MAPK 

cascade, leading to anti-inflammatory responses. The preliminary 

findings of docking were further validated with MD simulation on the 

binding interaction and stability of the flavonoid/PAF complex. 

 

Analysis of RMSD in Molecular Dynamic Simulation of PAFR in 

Complex with Flavonoids 

Further validation of PAF-flavonoid docking interactions was 

conducted via MD simulation. Besides, the complex formation of 

protein-ligand was also examined. The MD trajectory analysis involved 

in RMSD calculation are shown in Table 2 and Figure 5. Results show 

that re-docking with SR-27417 into PAFR exhibits a slightly RMSD 

deviation from its position of 1.52 ± 0.27 Å. All tested flavonoids 

exhibited the RMSD value from 3.34 to 4.20 Å. The deviation could be 

due to the adaptation of these small ligands (Figure 5) to the dynamic 

of the binding pocket. This corroborated the initial conformation as 

predicted by the docking study. 

 

Analysis of MMGBSA Binding Free Energy 

The estimation of binding free energy of the PAFR-flavonoid complex 

was analysed via MMGBSA calculation. The total free energies of 

binding (Δ𝐺TOT) are tabulated in Table 2. Based on the findings, the 

Δ𝐺TOT values of flavonoids ranged from - 35.39 to - 26.66 kcalmol
-1

. 

Fisetin and apigenin exhibited higher total free energies of binding with 

- 35.39 and - 33.5873 kcalmol
-1

, respectively, compared with an 

antagonist PAF (PAFR-cedrol) of - 29.3495 kcalmol
-1

. The interactions 

from MMGBSA analysis found that van der Waals interaction 

contributed equally to all flavonoids. In contrast, an electrostatic 

interaction was detected to be far different in binding free energy value 

for galangin with -14.1740 ± 3.9503 kcalmol
-1

. The PAFR-fisetin 

complex appeared to be the most stable, with the lowest free energy of 

binding of - 35.39 kcalmol
-1

 in 30 ns MD simulation. This flavonoid 

also exhibited more key residues than apigenin and galangin. Among 

the key residues from fisetin are Phe97, Phe98, Thr101, Phe174, 

Glu175, His188, Gln252 and Leu279 (Table 2). However, four residues 

of PAFR (Phe97, Phe98, Thr101 and Leu279) were found to have 

interacted in all flavonoids (apigenin, galangin and fisetin). Of these 

four residues, Phe98 and Thr101 were not detected to be bound with all 

ligands in the initial molecular docking. Similarly, Trp73 which was 

found in the interaction of protein-ligand in the docking study, was not 

observed after MD simulation. The validation by the MD simulation 

suggested that apigenin, galangin and fisetin stabilize in the binding site 

of hydrophobic and van der Waals interaction. The findings establish 

the binding pose obtained from the docking study of all studied 

flavonoids. Specific contribution per residue in the ligand-binding will 

give a better view of an understanding of PAFR-flavonoid interaction. 
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Figure 5: RMSD of PAFR docked with apigenin, galangin and fisetin in 30 ns simulation. 

 

 
Figure 6: MMGBSA binding energy decomposition (per 

residue). Per residue-free energy of binding with negative 

contributions of van der Waals and electrostatic interactions with (a) 

Cedrol, (b) Apigenin, (c) Galangin and (d) Fisetin. F: Phenylalanine, T: 

Threonine, E: Glutamate, L: Leucine, H: Histidine, Q: Glutamine 
 

Contribution of Individual Residue in Ligand Binding 

The contribution of individual residue in the ligand-binding against 

PAFR is illustrated in Figure 6. An F97 (Phe97) residue contributed to 

the highest van der Waals interaction, nearly - 5.0 kcalmol
-1

 in 

apigenin, compared with galangin and fisetin. However, the lowest total 

per residue-free energy contribution for apigenin was seen at E175 

(Glu175), which was given by electrostatic interaction. Similarly, 

fisetin exhibits the lowest E175 (Glu175) binding energy contribution 

of - 6.4 kcalmol
-1

 for electrostatic interaction among other residues. 

Nevertheless, the less total binding energy per residue was contributed 

more from F97 (Phe97). All key residues were anticipated to be equally 

contributed to the per residue-free energy of binding either by van der 

Waals or electrostatic interactions in all PAFR-flavonoid complexes 

 

Conclusion 

The tested flavonoids and the PAFR have been investigated for the 

docking and MD simulations. All flavonoids demonstrated better 

docking binding with PAFR in its active site. Furthermore, the 

validation of each ligand interaction through MD simulation confirmed 

the docking protocol. This suggests that apigenin, galangin and fisetin 

have a promising effect on PAF antagonists. In the future, these 

findings could be used for the biological evaluation of PAF-mediated 

diseases for exploring strategies concerning these flavonoids.  
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